Skip to main content
Log in

Assessment of the Detrimental Effects of Steam on Al2O3-Scale Establishment

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The effects of steam on the oxidation behavior of model Al2O3-scale forming Ni-base alloys at 1000 °C were studied. This was done by conducting tests using dry air and air +30 % H2O (“wet air” in short) gas environments. It was found that the critical concentration of Al (N *Al ) to form a continuous and protective alumina scale on Ni–Al–Cr alloys is increased when the environment is wet air. Based on a rigorous assessment of the parameters contained in Maak’s modification (Z Met 52:545, 1961) of Wagner’s criterion (Z Elektrochem 63:772, 1959) for the transition from internal oxidation to external scale formation, it was deduced that the factor that can change the critical concentration N *Al to the extent measured is the critical volume fraction f *v .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. F. S. Pettit, Transactions of the Metallurgical Society of AIME 239, 1296 (1967).

    Google Scholar 

  2. C. S. Giggins and F. S. Pettit, Journal of the Electrochemical Society 118, 1782 (1971).

    Article  Google Scholar 

  3. I. A. Kvernes and P. Kofstad, Metallurgical Transactions 3, 1511 (1972).

    Article  Google Scholar 

  4. M. C. Maris-Sida, G. H. Meier and F. S. Pettit, Metallurgical and Materials Transactions A 34A, 2609 (2003).

    Article  Google Scholar 

  5. R. Janakiraman, G. H. Meier and F. S. Pettit, Metallurgical and Materials Transactions A 30A, 2905 (1999).

    Article  Google Scholar 

  6. F. A. Elrefaie, A. Manolescu and W. W. Smeltzer, Journal of the Electrochemical Society 132, 2489 (1985).

    Article  Google Scholar 

  7. H. C. Yi, S. W. Guan, W. W. Smeltzer and A. Petric, Acta Metallurgica et Materialia 42, 981 (1994).

    Article  Google Scholar 

  8. J. A. Nesbitt, Journal of the Electrochemical Society 136, 1511 (1989).

    Article  Google Scholar 

  9. J. A. Nesbitt, Journal of the Electrochemical Society 136, 1518 (1989).

    Article  Google Scholar 

  10. F. Gesmundo and F. Viani, Oxidation of Metals 25, 269 (1986).

    Article  Google Scholar 

  11. F. Gesmundo, F. Viani and Y. Niu, Oxidation of Metals 42, 285 (1994).

    Article  Google Scholar 

  12. Y. Niu and F. Gesmundo, Oxidation of Metals 65, 329 (2006).

    Article  Google Scholar 

  13. S. Wang, F. Gesmundo and Y. Niu, Oxidation of Metals 72, 279 (2009).

    Article  Google Scholar 

  14. C. Wagner, Zeitschrift für Elektrochemie 63, 772 (1959).

    Google Scholar 

  15. F. Maak, Zeitschrift für Metallkunde 52, 545 (1961).

    Google Scholar 

  16. C. Wagner, Journal of the Electrochemical Society 103, 571 (1956).

    Article  Google Scholar 

  17. M. A. Alvin, Department of Energy, National Energy Technology Laboratory, Pittsburgh, PA, USA (private communication).

  18. E. Essuman, G. H. Meier, J. Zurek, M. Hansel and W. J. Quadakkers, Oxidation of Metals 69, 143 (2008).

    Article  Google Scholar 

  19. J. Zurek, M. Michalik, F. Schmitz, T.-U. Kern, L. Singheiser and W. J. Quadakkers, Oxidation of Metals 63, 401 (2005).

    Article  Google Scholar 

  20. S. Hayashi and T. Narita, Oxidation of Metals 56, 251 (2001).

    Article  Google Scholar 

  21. A. Rahmel and T. Tobolshi, Corrosion Science 5, 333 (1965).

    Article  Google Scholar 

  22. J. Ehlers, D. J. Young, E. J. Smaardijk, A. K. Tyagi, H. J. Penkella, L. Singheiser and W. J. Quadakkers, Corrosion Science 48, 3428 (2006).

    Article  Google Scholar 

  23. A. Galerie, S. Henry, Y. Wouters, M. Mermoux, J. P. Petit and L. Anton, Materials at High Temperature 22, 105 (2005).

    Article  Google Scholar 

  24. Y. Ikeda and K. Nii, Transactions of National Research Institute for Metals 26, 52 (1984).

    Google Scholar 

  25. W. Zhao, Ph.D thesis, University of Pittsburgh, (2012).

  26. W. Zhao and B. Gleeson, Oxidation of Metals 79, 613 (2013).

    Article  Google Scholar 

  27. F. H. Stott, G. C. Wood, D. P. Whittle, B. D. Bastow, Y. Shida and A. Martinez-Villafane, Solid State Ionics 12, 365 (1984).

    Article  Google Scholar 

  28. J. L. Meijering, Advances Materials Research 5, 81 (1971).

    Google Scholar 

  29. J. Megusar and G. H. Meier, Metallurgical Transactions A 7A, 1133 (1976).

    Article  Google Scholar 

  30. M. Ueda, Y. Inoue, H. Ochiai, M. Takeyama and T. Maruyama, Oxidation of Metals 79, 485 (2013).

    Article  Google Scholar 

  31. G. C. Wood, F. H. Stott, D. P. Whittle, Y. Shida and B. D. Bastow, Corrosion Science 2, 9 (1983).

    Article  Google Scholar 

  32. M. C. Maris-Sida, Ph.D thesis, University of Pittsburgh, (2004).

  33. H. V. Atkinson, Materials Science and Technology 4, 1052 (1988).

    Article  Google Scholar 

  34. R. Haugsrud, Corrosion Science 45, 211 (2003).

    Article  Google Scholar 

  35. H. E. Evans, Materials Science and Technology 4, 1089 (1988).

    Article  Google Scholar 

  36. F. H. Stott and G. C. Wood, Materials Science and Technology 4, 1072 (1988).

    Article  Google Scholar 

  37. R. T. DeHoff, F. N. Rhines, Quantitative Microscopy. (Herndon 46 1991).

  38. A. R. Setiawan, M. Hanafi, B. Ani, M. Ueda, K. Kawamura and T. Maruyama, ISIJ International 50, 259 (2010).

    Article  Google Scholar 

  39. E. Wimmer, W. Wolf, J. Sticht, P. Saxe, C. B. Geller, R. Najafabadi and G. A. Young, Physical Review B 77, 134305 (2008).

    Article  Google Scholar 

  40. H. Z. Fang, S. L. Shang, Y. Wang, Z. K. Liu, D. Alfonso, D. E. Alman, Y. K. Shin, C. Y. Zou, A. C. T. van Duin, Y. K. Lei and G. F. Wang, Journal of Applied Physics 115, 043501 (2014).

    Article  Google Scholar 

  41. D. Alfonso, Department of Energy, National Energy Technology Laboratory, Pittsburgh, PA, USA (private communication).

  42. C. Kluthe, T. Al-Kassab, J. Barker, W. Pyckhout-Hintzen and R. Kirchheim, Acta Materialia 52, 2701 (2004).

    Article  Google Scholar 

  43. R. Kirchheim, A. Pundt, T. Al-Kassab, F. Wang and C. Kluthe, Zeitschrift für Metallkunde 94, 266 (2003).

    Article  Google Scholar 

  44. J. Park and C. J. Altstetter, Metallurgical Transactions A 18A, 43 (1987).

    Article  Google Scholar 

  45. F. A. Elrefaie and W. W. Smeltzer, Journal of the Electrochemical Society 128, 2237 (1981).

    Article  Google Scholar 

  46. K. P. Trumble and M. Ruhle, Acta Metallurgica et Materialia 39, 1915 (1991).

    Article  Google Scholar 

  47. W. Gust, H. B. Hintz, A. Lodding, H. Odelius and B. Predel, Physica Status Solidi A 64, 187 (1981).

    Article  Google Scholar 

  48. A. Green and N. Swindells, Materials Science and Technology 1, 101 (1985).

    Article  Google Scholar 

  49. M. M. P. Janssen, Metallurgical Transactions 4, 1623 (1973).

    Google Scholar 

Download references

Acknowledgments

This research is supported by the U.S. Office of Naval Research, award N000014-09-1-1127 and managed by Dr. David Shifler. The authors wish to thank Professor David Young at the University of New South Wales, Australia, for his constructive suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Zhao.

Appendices

Appendix 1

In Wagner’s theory, γ is defined in such a way that the internal oxidation rate of dilute alloy is assumed to follow a parabolic law in the form of:

$$\xi = 2\gamma \sqrt {D_{O} } \cdot t.$$
(A1)

Based on this definition, Wagner studied the mass balances at the internal oxidation front and found that γ can be calculated by solving the following equation:

$$\frac{{2N_{O}^{S} }}{{3N_{Al}^{o} }} = \frac{G(\gamma )}{{F(\gamma \varphi^{1/2} )}},$$
(A2)

where N SO is the oxygen solubility on the alloy surface, G(r) is auxiliary function with the form of \(G(r) = \pi^{1/2} r\exp (r^{2} )erf(r)\) and N oAl is the Al concentration in the alloy.

It is seen that γ is a function of N oAl while the critical concentration N *Al,1 is a function of γ. However, the value of N *Al,1 , which is a unique value for Ni–Al alloy system under a given exposure condition, should have nothing to do with the N oAl . Therefore, there should be an iteration process to determine the N *Al,1 . This iteration process starts with a small N oAl value. Taking this value into Eq. A2 yields a γ value. Then, taking this γ value into Eq. 1 of the main text yields a N *Al,1 . If the N oAl is much smaller than N *Al,1 , N oAl needs to be increased and N *Al,1 is calculated for the new N oAl . The iterations are completed when N oAl equals N *Al,1 .

Appendix 2

Determining the Effective Oxygen Diffusivity DO,eff in the Internal Oxidation Zone

Park and Altstetter [44] measured the oxygen diffusion coefficient in solid γ-Ni by a solid-state electrochemical method. It was found the diffusivity of oxygen in nickel is:

$$D_{O} = 4.9 \times 10^{ - 2} \exp \left( { - \frac{{164{\text{kJ/mole}}}}{RT}} \right){\text{cm}}^{ 2} / {\text{s}}\quad (850\,{}^{\circ}{\text{C}}\;\text{to}\;1400\,{}^{\circ}{\text{C}}).$$
(A3)

This corresponds to the oxygen diffusivity in a clean bulk nickel matrix. At 1000 °C, D O = 9.1 × 10−9 cm2/s. The effective diffusion coefficient of oxygen in the IOZ should consider the contribution from the internal oxide/alloy matrix interfaces. From a study by Stott et al. [27], the effective diffusion coefficient of oxygen can be calculated by:

$$\frac{{D_{O,eff} }}{{D_{O} }} = 1 + \frac{{V_{ox} N_{{BO_{v} }} }}{{V_{all} }}\left[ {\frac{{2\delta_{i} D_{O,i} }}{{rD_{O} }} - 1} \right],$$
(A4)

where the D O is the oxygen diffusion coefficient in the nickel matrix, D O,i is the interfacial diffusion coefficient, N BOv is the mole fraction of oxide, V ox and V all are the molar volume of the oxide and the alloy, δ i is the width of the interface and r is the radius of the precipitates. From the data used by Stott et al. [27]., V ox = 19.5 cm3, V all = 6.67 cm3, δ i was assumed to be 1 nm, which is typically the width assumed for grain-boundary diffusion study and D O,i/D O was found to be 8.0x103 at 1000 °C. r is measured from Fig. 8 and is determined to be around 0.25 μm. Substituting all these data into Eq. A4, the effective oxygen diffusion coefficient in the internal oxidation zone for Ni-3 at.% Al alloy is calculated to be D O,eff = 1.0x10−7 cm2/s.

Determining the Oxygen Solubility N SO from Thermodynamics

When there is an external NiO scale present, the oxygen solubility N SO is no longer determined by the exterior gas environment, but by the equilibria established at the alloy/scale interface. This equilibrium is not the one for the γ-Ni and NiO. Rather, because of the presence of the Al in the alloy, the equilibria are established by three phases: γ-Ni, NiO and the spinel NiAl2O4. This can be shown by a schematic of an isothermal cross section of the ternary phase diagram for Ni–Al–O at 1000 °C, Fig. 13. The oxygen solubility for our case should correspond to the point B on this ternary phase diagram. Elrefair and Smeltzer [45] determined the oxygen partial pressure corresponding to the three-phase equilibria between 1123 and 1423 K based on electrochemical measurements on a Ni,NiO,NiAl2O4|ZrO2(+CaO)|Ni,NiO cell and it follows the relation:

$$\log P_{{O_{2} }} ({\text{atm}}) = - \frac{24,478}{T} + 8.804\left( { \pm \frac{60}{T}} \right)\quad (1123 - 1423K).$$
(A5)
Fig. 13
figure 13

Schematic of the cross-section of Ni–Al–O ternary diagram near the Ni-rich corner at 1000 °C

At 1000 °C, the oxygen pressure corresponding to γ-Ni/NiO/NiAl2O4 coexistence is 4.1 × 10−11atm. This oxygen partial pressure is slightly lower than the one corresponding to point A, 4.5 × 10−11atm, which is the dissociation pressure of oxygen for NiO equilibrated with Ni. Further, the Gibbs free energy change for the reaction:

$$\frac{1}{2}O_{2(g)} = \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{O}_{\;(Ni,absorb)} ,$$
(A6)

was found [46] to be:

$$\Delta G_{{}}^{o} = - {179{,}300} + 67.6T\;{\text{J/mol}},$$
(A7)

when O uses 1 at.% standard state, which equals 100 × N SO . Therefore, the oxygen solubility corresponding to the oxygen partial pressure for three-phase equilibria at 1000 °C is determined to be N SO  = 4.1 × 10−4.

Determining the Diffusion Coefficient of Aluminum DAl in Nickel

This diffusion coefficient D Al in Ni has been reported in several papers [4749]. At around 1000 °C, the D Al values from those papers are in fairly good agreement. An accurate temperature dependence is deduced to be [47]:

$$D_{AlNi} = 1.0\exp \left( {\frac{{ - 260\,{\text{kJ/mol}}}}{RT}} \right){\text{cm}}^{ 2} / {\text{s}}.$$
(A8)

At 1000 °C, D Al is 2.1 × 10−11 cm2/s.

Determining the Dimensionless Parameter u and γ

The values of u and γ can be determined experimentally from the thickness of the metal recession zone and internal oxidation zone observed on the cross-sectional images. In dry air, by using D O,eff found previously, u dry and γ dry were determined to be u dry = 0.0098 and γ dry = 0.082.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, W., Gleeson, B. Assessment of the Detrimental Effects of Steam on Al2O3-Scale Establishment. Oxid Met 83, 607–627 (2015). https://doi.org/10.1007/s11085-015-9541-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-015-9541-8

Keywords

Navigation