Skip to main content
Log in

The Oxidation Mechanism of Pure Aluminum Powder Particles

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The oxidation mechanism of aluminum powder particles was studied by simultaneous TG–DTA analysis (under air atmosphere) at different heating rates (10, 20 and 30 °C/min) and from an ambient temperature up to 1,400 °C. Also, the rate of oxidation reaction (rate of weight gain; RTG) was obtained by the differentiation of weight gain (TGG) curve. Additionally, SEM and X-ray diffraction analysis (XRD) studies were performed on each of the above samples for their structural and phase studies. The results obtained from TG–DTA and RTG curves; microstructure and phase analysis studies indicated that the oxidation of aluminum powders occurred during five stages. On the other hand, according to the results obtained from XRD and TGG curves, aluminum particles after the thermal analysis test, even heated up to 1,400 °C, were not entirely oxidized (i.e. less than 10 %).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. E. W. Price, and R. K. Sigman, in Combustion of Aluminized Solid Propellants, eds. V. Yang, T. Brill, and W. Ren, (American Institute of Aeronautics and Astronautics, 2000), p. 663.

  2. H. Dong and S. Zhumei, Combustion and Flame 105, (3), 428 (1996).

    Article  CAS  Google Scholar 

  3. S. Wang, K. Liang, X. Zhang, H. Li and S. Gu, Key Engineering Materials 224–226, 745 (2002).

    Article  Google Scholar 

  4. L. Galfetti, L. T. DeLuca, F. Severini, G. Colombo, L. Meda and G. Marra, Aerospace Science and Technology 11, 26 (2007).

    Article  CAS  Google Scholar 

  5. F. Maggi, A. Bandera, L. Galfetti, L. T. De Luca and T. L. Jackson, Acta Astronautica 66, 1563 (2010).

    Article  CAS  Google Scholar 

  6. L. Galfetti, L. T. De Luca, F. Severini, L. Meda, G. Marra, M. Marchetti, M. Regi and S. Bellucci, Journal of Physics: Condensed Matter 18, S1991 (2006).

    Article  CAS  Google Scholar 

  7. L. T. De Luca, L. Galfetti, F. Severini, L. Meda, G. Marra, A. B. Vorozhtsov, V. S. Sedoi and V. A. Babuk, Combustion, Explosion, and Shock Waves 41, (6), 680 (2005).

    Article  Google Scholar 

  8. M. A. Trunov, M. Schoenitz and E. L. Dreizin, Propellants, Explosive, Pyrotechnics 30, 1 (2005).

    Article  Google Scholar 

  9. A. G. Alekseev, R. A. Barlas, T. I. Tsidelko, and A. F. Shapoval, in Effect of Particle Size on the Combustibility and Explosion Parameters of Dispersed Aluminum and Magnesium Powders, ed. V. V. Nedin, (Preduprezhdenie Vnezapnykh Vzryvov Gazodispersnykh Sistem, 1971), p. 66 (in Russian).

  10. A. F. Belyaev, Y. V. Frolov and A. I. Korotkov, Fiz Goreniia Vzryva 4, (3), 323 (1968) (in Russian).

    CAS  Google Scholar 

  11. C. Brossard, A. Ulas, C. L. Yen, and K. K. Kuo, in 16th International Colloquium on the Dynamic of Explosions and Reactive Systems, Krakow, Poland, 3th–8th August (1997).

  12. M. E. Derevyga, L. N. Stesik and E. A. Fedorin, Combustion, Explosion, Shock 13, (6), 722 (1977).

    Article  Google Scholar 

  13. V. A. Ermakov, A. A. Razdobreev, A. I. Skorik, V. V. Pozdeev and S. S. Smolyakov, Fiz Goren Vzryva 18, (2), 141 (1982) (in Russian).

    CAS  Google Scholar 

  14. C. Johnson, T. Parr, D. Hanson-Parr, R. Hollins, S. Fallis, and K. Higa, Proceedings 37th JANNAF Combustion Subcommittee Meeting, 13th–17th November, (2000), p. 539.

  15. V. I. Rozenband and N. I. Vaganova, Combustion and Flame 88, (1), 113 (1992).

    Article  CAS  Google Scholar 

  16. Y. Zhu and S. Yuasa, Combustion and Flame 115, 327 (1998).

    Article  CAS  Google Scholar 

  17. L. P. H. Jeurgens, W. G. Sloof, F. D. Tichelaar and E. J. Mittemeijer, Physical Review B 62, 4707 (2000).

    Article  CAS  Google Scholar 

  18. L. P. H. Jeurgens, W. G. Sloof, F. D. Tichelaar and E. J. Mittemeijer, Thin Solid Films 418, 89 (2002).

    Article  CAS  Google Scholar 

  19. L. P. H. Jeurgens, W. G. Sloof, F. D. Tichelaar and E. J. Mittemeijer, Surface Science 506, 313 (2002).

    Article  CAS  Google Scholar 

  20. L. P. H. Jeurgens, W. G. Sloof, F. D. Tichelaar and E. J. Mittemeijer, Journal of Applied Physics 92, (3), 1649 (2002).

    Article  CAS  Google Scholar 

  21. V. Kolarik, M. M. Juez-Lorenzo and H. Fietzek, Materials Science Forum 696, 290 (2011).

    Article  CAS  Google Scholar 

  22. J. C. Sanchez-Lopez, A. R. Gonzalez-Elipe and A. Fernandez, Journal of Materials Research 13, 703 (1998).

    Article  CAS  Google Scholar 

  23. O. A. Riano, J. Wadsworth and O. D. Sherby, Acta Materialia 51, 3617 (2003).

    Article  Google Scholar 

  24. M. A. Trunov, M. Schoenitz, X. Zhu and E. L. Dreizin, Combustion and Flame 140, 310 (2005).

    Article  CAS  Google Scholar 

  25. N. Eisenreich, H. Fietzek, M. M. Juez-Lorenzo, V. Kolarik, A. Koleczko and V. Weiser, Propellants, Explosives, Pyrotechnics 29, 3 (2004).

    Article  Google Scholar 

  26. V. Weiser, S. Kelzenberg and N. Eisenreich, Propellants, Explosives, Pyrotechnics 26, 284 (2001).

    Article  CAS  Google Scholar 

  27. I. Levin and D. Brandon, Journal of American Ceramic Society 81, 1995 (1998).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Panjepour.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hasani, S., Panjepour, M. & Shamanian, M. The Oxidation Mechanism of Pure Aluminum Powder Particles. Oxid Met 78, 179–195 (2012). https://doi.org/10.1007/s11085-012-9299-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-012-9299-1

Keywords

Navigation