Skip to main content
Log in

Generalized \((\frac{G^{\prime }}{G})\)-expansion method and exact traveling wave solutions of the perturbed nonlinear Schrödinger’s equation with Kerr law nonlinearity in optical fiber materials

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, we investigate the nonlinear the perturbed nonlinear Schrödinger’s equation (NLSE) with Kerr law nonlinearity given in Zhang et al. (Appl Math Comput 216:3064–3072, 2010) and obtain new exact traveling solutions by using generalized \((\frac{G^{\prime }}{G})\)-expansion method. Under some parameter conditions, some explicit expressions of solutions for the equation are obtained. These solutions contain hyperbolic function solutions, trigonometric function solutions and rational function solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ablowitz, M.J., Segur, H.: Solitons and Inverse Scattering Trasform. SIAM, Philadelphia (1981)

    Book  MATH  Google Scholar 

  • Aslan, İ., Özis, T.: On the validity and reliability of the \((\frac{G^{\prime }}{G})\)-expansion method by using higher-order nonlinear equations. Appl. Math. Comput 211, 531–536 (2009)

    MathSciNet  MATH  Google Scholar 

  • Bekir, A.: Application of the \((\frac{G^{\prime }}{G})\)-expansion method for nonlinear evolution equations. Phys. Lett. A 372, 3400–3406 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Bhrawy, A.H., Alshaery, A.A., Hilal, E.M., Savescu, M., Milovic, D., Khan, K.R., Mahmood, M.F., Jovanoski, Z., Biswas, A.: Optical solitons in birefringent fibers with spatio-temoral dispersion. Optik 125, 4935–4944 (2014a)

    Article  ADS  Google Scholar 

  • Bhrawy, A.H., Alshaery, A.A., Hilal, E.M., Jovanoski, Z., Biswas, A.: Bright and dark solitons in a cascaded system. Optik 125, 6162–6165 (2014b)

    Article  ADS  Google Scholar 

  • Biswas, A.: Quasistationary optical solitons with parabolic law nonlinearity. Opt. Commun. 216, 427–437 (2003)

    Article  ADS  Google Scholar 

  • Biswas, A.: 1-soliton solution of 1 + 2 dimensional nonlinear Schrödingers equation in power law media Commun. Nonlinear Sci. Numer. Simul. 14, 1830–1833 (2009a)

    Article  MATH  Google Scholar 

  • Biswas, A.: Topological 1-soliton solution of the nonlinear Schrödingers equation with Kerr law nonlinearity in 1 + 2 dimensions. Commun. Nonlinear Sci. Numer. Simul. 14, 2845–2847 (2009b)

    Article  ADS  MATH  Google Scholar 

  • Biswas, A., Konar, S.: Introduction to Non-Kerr Law Optical Solitons. CRC Press, Boca Raton (2007)

    MATH  Google Scholar 

  • Biswas, A., Milovic, D.: Travelling wave soltions of the nonlinear Schrödingers equation in non-Kerr law media. Commun. Nonlinear Sci. Numer. Simul. 14, 1993–1998 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Biswas, A., Milovic, D.: Bright and dark sotlitons of the generalized Schrödingers equation. Commun. Nonlinear Sci. Numer. Simul. 15, 1473–1484 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Biswas, A., Porsezian, K.: Soliton perturbation theory for the modified nonlinear Schrödingers equation. Commun. Nonlinear Sci. Numer. Simul. 12, 886–903 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Ebadi, G., Biswas, A.: Application of the \((\frac{G^{\prime }}{G})\)-expansion method for nonlinear diffusion equations with nonlinear source. J. Frankl. Inst. 347, 1391–1398 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Green, P.D., Biswas, A.: Bright and dark optical solitons with time-depentdent coefficients in a non-Kerr law media. Commun. Nonlinear Sci. Numer. Simul. 15, 3865–3873 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Guo, B.L., Chen, H.L.: Homoclinic orbits for a perturbed quintic-cubic nonlinear Schrödinger equation. Commun. Nonlinear Sci. Numer. Simul. 6, 227–230 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Guo, B.L., Chen, H.L.: Homoclinic orbit in a six-dimensional model of a perturbed higher-order nonlinear Schrödinger equation. Commun. Nonlinear Sci. Numer. Simul. 9, 431–441 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Khalique, C.M., Biswas, A.: A Lie symmetry approach to nonlinear Schrödingers equation with with non-Kerr law nonlinearity. Commun. Nonlinear Sci. Numer. Simul. 14, 4033–4040 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Kohl, R., Biswas, A., Milovic, D., Zerradc, E.: Optical sotliton perturbation in a non-Kerr law media. Opt. Laser Technol. 40, 647–662 (2008)

    Article  ADS  Google Scholar 

  • Ma, W.X., Huang, T.W., Zhang, Y.: A multiple exp-function method for nonlinear differential equations and its application. Phys. Scr. 82, 065003 (2010)

    Article  ADS  MATH  Google Scholar 

  • Ma, W.X.: Generalized bilinear differential equations. Stud. Nonlinear Sci. 2(4), 140–144 (2011a)

    Google Scholar 

  • Ma, W.X.: Bilinear equations, Bell polynomials and linear superposition principle. J. Phys. Conf. Ser. 411, 012021 (2011b)

    Article  Google Scholar 

  • Ma, W.X.: Bilinear equations and resonant solutions characterized by Bell polynomials. Rep. Math. Phys. 72, 41–56 (2013a)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Ma, W.X.: Trilinear equations, Bell polynomials, and resonant solutions. Front. Math. China 8(5), 1139–1156 (2013b)

    Article  MathSciNet  MATH  Google Scholar 

  • Ma, W.X., Chen, M.: Direct search for exact solutions to the nonlinear Schrödinger equation. Appl. Math. Comput. 215, 2835–2842 (2009)

    MathSciNet  MATH  Google Scholar 

  • Ma, W.X., Fuchssteiner, B.: Explicit and exact solutions to a Kolmogorov-Petrovskii-Piskunov equation. Int. J. Nonlinear Mech. 31, 329–338 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • Ma, W.X., Lee, J.-H.: A transformed rational function method and exact solutions to the 3+1 dimensional Jimbo-Miwa equation. Choas Solitons Fractals 42, 1356–1363 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Ma, W.X., You, Y.: Solving the Korteweg-DE Vries equation by its bilinear form: wronskian solutions. Trans. Am. Math. Soc. 357, 1753–1778 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Miao, X.J., Zhang, Z.Y.: The modified \((\frac{G^{\prime }}{G})\)-expansion method and traveling wave solutions of nonlinear the perturbed nonlinear Schrödinger’s equation with Kerr law nonlinearity. Commun. Nonlinear Sci. Numer. Simul. 16, 4259–4267 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Mirzazadeh, M., Eslami, M., Savescu, M., Bhrawy, A.H., Alshaery, A.A., Hilal, E.M., Biswas, A.: Optical solitons in DWDM system with spatio-temoral dispersion. J. Nonlinear Opt. Phys. Mater. 24, 1550006 (2015a)

    Article  ADS  Google Scholar 

  • Mirzazadeh, M., Eslami, M., Zhou, Q., Mahmood, M.F., Zerrad, E., Biswas, A., Belic, M.: Optical solitons in nonlinear directional couplers with \((\frac{G^{\prime }}{G})\)-expansion scheme. J. Nonlinear Opt. Phys. Mater. 24, 1550017 (2015b)

    Article  ADS  Google Scholar 

  • Taghizadeh, N., Mirzazadeh, M.: The simplest equation method to study perturbed nonlinear Schrödingers equation with Kerr law nonlinearity. Commun. Nonlinear Sci. Numer. Simul. 17, 1493–1499 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Topkara, E., Milovic, D., Sarma, A.K., Zerrad, E., Biswas, A.: Optical solitons with non-Kerr law nonlinearity and inter-modal dispersion with with time-depentdent coefficients. Commun. Nonlinear Sci. Numer. Simul. 15, 2320–2330 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Vega-Guzman, J., Alshaery, A.A., Hilal, E.M., Bhrawy, A.H., Mahmood, M.F., Moraru, L., Biswas, A.: Optical soliton perturbation in magento-optic waveguides with spatio-temoral dispersion. J. Optoelectron. Adv. Mater. 16, 1063–1070 (2014)

    Google Scholar 

  • Wang, M.L., Li, X.Z., Zhang, J.L.: The \((\frac{G^{\prime }}{G})\)-expansion method and traveling wave solutions of nonlinear evolutions in mathematical physics. Phys. Lett. A 372, 417–423 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  • Xu, Y.N., Savescu, M., Khan, K.R., Mahmood, M.F., Biswas, A., Belic, M.: Soliton propagation through nanoscale waveguides in optical metamaterials. Opt. Laser Technol. 77, 177–186 (2016)

    Article  ADS  Google Scholar 

  • Yan, Z.Y., Zhang, H.Q.: New explicit solitary wave solutions and periodic wave solutions for Whitham-Broer-Kaup equation in shallow water. Phys. Lett. A 285, 355–362 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Yıldırım, A., Pınar, Z.: Application of exp-function method for nonlinear reaction-diffusion equations arising in mathematical biology. Comput. Math. Appl. 60, 1873–1880 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Zakharov, V.E., Shabat, A.B.: Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Sov. Phys. JETP 34, 62–69 (1972)

    ADS  MathSciNet  Google Scholar 

  • Zhang, Z.Y.: New exact traveling wave solutions for the nonlinear Klein-Gordon equation. Turk. J. Phys. 32, 235–240 (2008)

    Google Scholar 

  • Zhang, S., Tong, J.L., Wang, W.: A Generalized \((\frac{G^{\prime }}{G})\)-expansion method for the MkdV equation with variable coefficients. Phys. Lett. A 372, 2254–2257 (2008)

    Article  ADS  MATH  Google Scholar 

  • Zhang, H.Q.: New exact complex travelling wave solutions to nonlinear Schrödinger (NLS) equation. Commun. Nonlinear Sci. Numer. Simul. 14, 668–673 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Zhang, Z.Y., Liu, Z.H., Miao, X.J., Chen, Y.Z.: New exact solutions to the perturbed nonlinear Schrödinger’s equation with Kerr law nonlinearity. Appl. Math. Comput. 216, 3064–3072 (2010)

    MathSciNet  MATH  Google Scholar 

  • Zhang, Z.Y., Li, Y.X., Liu, Z.H., Miao, X.J.: New exact solutions to the perturbed nonlinear Schrodinger’s equation with Kerr law nonlinearity via modified trigonometric function series method. Commun. Nonlinear Sci. Numer. Simul. 16, 3097–3106 (2011a)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Zhang, Z.Y., Liu, Z.H., Miao, X.J., Chen, Y.Z.: Qualitative analysis and traveling wave solutions for the perturbed nonlinear Schrödinger’s equation with Kerr law nonlinearity. Phys. Lett. A 375, 1275–1280 (2011b)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Zhang, Z.Y., Gan, X.Y., Yu, D.M.: Bifurcation behavior of the traveling wave solutions of nonlinear the perturbed nonlinear Schrödinger’s equation with Kerr law nonlinearity. Z. Naturforschung 66, 721–727 (2011c)

    Article  ADS  Google Scholar 

  • Zhang, Z.Y., Gan, X.Y., Yu, D.M., Zhang, Y.H., Li, X.P.: A note on exact traveling wave solutions of the perturbed nonlinear Schrödingers equation with Kerr law nonlinearity. Commun. Theor. Phys. 57, 764–770 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Zhang, Z.Y., Zhang, Y.H., Gan, X.Y., Yu, D.M.: A note on exact traveling wave solutions for the Klein-Gordon-Zakharov equations. Z. Naturforschung 67, 167–172 (2012)

    ADS  Google Scholar 

  • Zhang, Z.Y., et al.: A new method to construct traveling wave solutions for the Klein-Gordon-Zakharov equations. Rom. J. Phys. 58, 766–777 (2013a)

    Google Scholar 

  • Zhang, Z.Y., et al.: Abundant exact traveling wave solutions for the Klein-Gordon-Zakharov equations via the tanh-coth expansion method and and Jacobi elliptic function expansion method. Rom. J. Phys. 58, 749–765 (2013b)

    Google Scholar 

  • Zhang, Z.Y., et al.: First integral method and exact solutions to nonlinear partial differential equations arising in mathematical physics. Rom. Rep. Phys. 65, 1155–1169 (2013c)

    Google Scholar 

  • Zhang, Z.Y.: Exact traveling wave solutions of the perturbed Klein-Gordon equation with quadratic nonlinearity in (1 + 1)-dimension, Part I-without local inductance and dissipation effect. Turk. J. Phys. 37, 259–267 (2013d)

    Google Scholar 

  • Zhang, Z.Y., Xia, F.L., Li, X.P.: Bifurcation analysis and the travelling wave solutions of the Klein-Gordon-Zakharov equations. Pramana 80, 41–59 (2013e)

    Article  ADS  Google Scholar 

  • Zhang, Z.Y., et al.: The extended \((\frac{G^{\prime }}{G})\)-expansion method and travelling wave solutions for the perturbed nonlinear Schrödinger’s equation with Kerr law nonlinearity. Pramana 82, 1011–1029 (2014)

    Article  Google Scholar 

  • Zhang, L.H., Si, J.G.: New soliton and periodic solutions of (1 + 2)-dimensional nonlinear Schrödinger equation with dual-power law nonlinearity. Commun. Nonlinear Sci. Numer. Simul. 15, 2747–2754 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Zhou, Q., Zhu, Q.P., Liu, Y.X., Biswas, A., Bhrawy, A.H., Khan, K.R., Mahmood, M.F., Belic, M.: Solitons in optical metamaterials with parabolic law nonlinearity and spatio-termporal. J. Optoelectron. Adv. Mater. 16, 1221–1225 (2014)

    Google Scholar 

  • Zhou, Q., Zhu, Q.P., Savescu, M., Bhrawy, A., Biswas, A.: Optical solitons with nonlinear dispersion in parabolic law medium. Proc. Rom. Acad. Ser. A 16, 152–159 (2015)

    MathSciNet  Google Scholar 

  • Zhou, Q., Zhu, Q.P., Liu, Y.X., Yu, H., Wei, C., Yao, P., Bhrawy, A.H., Biswas, A.: Bright, dark and singular optical solitons in cascaded system. Laser Phys. 25, 015402 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by Hunan Provincial Natural Science Foundation of China No.2016JJ2061, Scientific Research Fund of Hunan Provincial Education Department No.15B102, China Postdoctoral Science Foundation No.2013M532169, No.2014T70991, NNSF of China Grant No.11671101, the construct program of the key discipline in Hunan province No.201176 and and the Aid program for Science and Technology Innovative Research Team in Higher Educational Instituions of Hunan Province (No. 2014207), the Key Built Disciplines of Hunan University of Finance and Economics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianguo Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Wu, J. Generalized \((\frac{G^{\prime }}{G})\)-expansion method and exact traveling wave solutions of the perturbed nonlinear Schrödinger’s equation with Kerr law nonlinearity in optical fiber materials. Opt Quant Electron 49, 52 (2017). https://doi.org/10.1007/s11082-016-0884-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-016-0884-4

Keywords

Navigation