Skip to main content
Log in

A decomposition method for a class of convex generalized Nash equilibrium problems

  • Research Article
  • Published:
Optimization and Engineering Aims and scope Submit manuscript

Abstract

In this paper, we study a numerical approach to compute a solution of the generalized Nash equilibrium problem (GNEP). The GNEP is a potent modeling tool that has been increasingly developing in recent decades. Much of this development has centered around applying variational methods to the so-called GNSC, a useful but restricted subset of GNEP where each player has the same constraint set. One popular approach to solve the GNSC is to use the apparent separability of each player to build a decomposition method. This method has the benefit of being easily implementable and can be parallelized. Our aim in this paper is to show an extension of the decomposition method to a class of convex GNEP. We prove convergence of the proposed algorithm under a full convexity assumption. Then, we show numerical results on some examples to validate our approach and discuss the assumptions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. These two methods are also connected to proximal algorithms and once again we refer to Parikh and Boyd (2014).

References

  • Aharoni R, Censor Y (1989) Block-iterative projection methods for parallel computation of solutions to convex feasibility problems. Linear Algebra Appl 120:165–175

    MathSciNet  MATH  Google Scholar 

  • Arrow KJ, Debreu G (1954) Existence of an equilibrium for a competitive economy. Econometrica 22(3):265–290

    MathSciNet  MATH  Google Scholar 

  • Aussel D, Sagratella S (2017) Sufficient conditions to compute any solution of a quasivariational inequality via a variational inequality. Math Methods Oper Res 85(1):3–18

    MathSciNet  MATH  Google Scholar 

  • Bauschke HH, Combettes PL (2011) Convex analysis and monotone operator theory in Hilbert spaces. Springer, Berlin

    MATH  Google Scholar 

  • Bensoussan A (1974) Points de Nash dans le cas de fonctionnelles quadratiques et jeux différentiels linéaires à \(N\) personnes. SIAM J Control 12(3):40–460

    MATH  Google Scholar 

  • Börgens E, Kanzow C (2018) A distributed regularized Jacobi-type ADMM-method for generalized Nash equilibrium problems in Hilbert spaces. Numer Funct Anal Optim 39(12):1316–1349

    MathSciNet  MATH  Google Scholar 

  • Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Briceño-Arias Luis M, Combettes Patrick L (2013) Monotone operator methods for Nash equilibria in non-potential games. In: Bailey DH, Bauschke HH, Borwein P, Garvan F, Théra M, Vanderwerff JD, Wolkowicz H (eds) Computational and analytical mathematics. Springer, New York, pp 143–159

    Google Scholar 

  • Cavazzuti E, Pappalardo M, Passacantando M (2002) Nash equilibria, variational inequalities, and dynamical systems. J Optim Theory Appl 114(3):491–506

    MathSciNet  MATH  Google Scholar 

  • Cojocaru M-G, Wild E, Small A (2018) On describing the solution sets of generalized Nash games with shared constraints. Optim Eng 19(4):845–870

    MathSciNet  MATH  Google Scholar 

  • Contreras J, Klusch M, Krawczyk JB (2004) Numerical solutions to Nash–Cournot equilibria in coupled constraint electricity markets. IEEE Trans Power Syst 19(1):195–206

    Google Scholar 

  • Downs A (1957) An economic theory of political action in a democracy. J Polit Econ 65(2):135–150

    Google Scholar 

  • Dreves A (2016) Improved error bound and a hybrid method for generalized Nash equilibrium problems. Comput Optim Appl 65(2):431–448

    MathSciNet  MATH  Google Scholar 

  • Dreves A, Sudermann-Merx N (2016) Solving linear generalized Nash equilibrium problems numerically. Optim Methods Softw 31(5):1036–1063

    MathSciNet  MATH  Google Scholar 

  • Dreves A, Facchinei F, Kanzow C, Sagratella S (2011) On the solution of the KKT conditions of generalized Nash equilibrium problems. SIAM J Optim 21(3):1082–1108

    MathSciNet  MATH  Google Scholar 

  • Dutang C (2013) Existence theorems for generalized Nash equilibrium problems: an analysis of assumptions. J Nonlinear Anal Optim 4(2):115–126

    MathSciNet  MATH  Google Scholar 

  • Facchinei F, Kanzow C (2009) Penalty methods for the solution of generalized Nash equilibrium problems (with complete test problems). Sapienza University of Rome, Rome

    MATH  Google Scholar 

  • Facchinei F, Lampariello L (2011) Partial penalization for the solution of generalized Nash equilibrium problems. J Global Optim 50(1):39–57

    MathSciNet  MATH  Google Scholar 

  • Facchinei F, Kanzow C (2010) Generalized Nash equilibrium problems. Ann Oper Res 175(1):177–211

    MathSciNet  MATH  Google Scholar 

  • Facchinei F, Pang J-S (2006) Exact penalty functions for generalized Nash problems. Springer, Boston, pp 115–126

    MATH  Google Scholar 

  • Facchinei F, Pang J-S (2007) Finite-dimensional variational inequalities and complementarity problems. Springer, Berlin

    MATH  Google Scholar 

  • Facchinei F, Pang J-S (2010) Nash equilibria: the variational approach. In: Palomar DP, Eldar YC (eds) Convex optimization in signal processing and communications. Cambridge University Press, Cambridge, pp 443–493

    Google Scholar 

  • Facchinei F, Sagratella S (2011) On the computation of all solutions of jointly convex generalized Nash equilibrium problems. Optim Lett 5(3):531–547

    MathSciNet  MATH  Google Scholar 

  • Facchinei F, Piccialli V, Sciandrone M (2011) Decomposition algorithms for generalized potential games. Comput Optim Appl 50(2):237–262

    MathSciNet  MATH  Google Scholar 

  • Facchinei F, Kanzow C, Sagratella S (2014) Solving quasi-variational inequalities via their KKT conditions. Math Program 144(1–2):369–412

    MathSciNet  MATH  Google Scholar 

  • Facchinei F, Kanzow C, Sagratella S (2015) The semismooth Newton method for the solution of quasi-variational inequalities. Comput Optim Appl 62(1):85–109

    MathSciNet  MATH  Google Scholar 

  • Fischer A, Herrich M, Schönefeld K (2014) Generalized Nash equilibrium problems-recent advances and challenges. Pesquisa Operacional 34(3):521–558

    Google Scholar 

  • Fischer A, Herrich M, Izmailov AF, Solodov MV (2016) A globally convergent LP-newton method. SIAM J Optim 26(4):2012–2033

    MathSciNet  MATH  Google Scholar 

  • Fukushima M (2011) Restricted generalized Nash equilibria and controlled penalty algorithm. CMS 8(3):201–218

    MathSciNet  MATH  Google Scholar 

  • Harker PT (1991) Generalized Nash games and quasi-variational inequalities. Eur J Oper Res 54(1):81–94

    MATH  Google Scholar 

  • Hobbs BF, Pang J-S (2007) Nash-Cournot equilibria in electric power markets with piecewise linear demand functions and joint constraints. Oper Res 55(1):113–127

    MathSciNet  MATH  Google Scholar 

  • Ichiishi T (2014) Game theory for economic analysis. Elsevier, London

    MATH  Google Scholar 

  • Izmailov AF, Solodov MV (2014) On error bounds and Newton-type methods for generalized Nash equilibrium problems. Comput Optim Appl 59(1):201–218

    MathSciNet  MATH  Google Scholar 

  • Jing-Yuan W, Smeers Y (1999) Spatial oligopolistic electricity models with Cournot generators and regulated transmission prices. Oper Res 47(1):102–112

    MATH  Google Scholar 

  • Kanzow C, Steck D (2016) Augmented Lagrangian methods for the solution of generalized Nash equilibrium problems. SIAM J Optim 26(4):2034–2058

    MathSciNet  MATH  Google Scholar 

  • Kanzow C, Steck D (2019) Quasi-variational inequalities in Banach spaces: theory and augmented Lagrangian methods. SIAM J Optim 29(4):3174–3200

    MathSciNet  MATH  Google Scholar 

  • Lampariello L, Sagratella S (2020) Numerically tractable optimistic bilevel problems. Comput Optim Appl 76:277–303. https://doi.org/10.1007/s10589-020-00178-y

    Article  MathSciNet  MATH  Google Scholar 

  • Migot T, Cojocaru M-G (2020a) A parametrized variational inequality approach to track the solution set of a generalized Nash equilibrium problem. Eur J Oper Res 283(3):1136–1147

    MathSciNet  MATH  Google Scholar 

  • Migot T, Cojocaru M-G (2020b) A dynamical system approach to the generalized Nash equilibrium problem. J Nonlinear Var Anal 4(1):27–44

    MATH  Google Scholar 

  • Nabetani K, Tseng P, Fukushima M (2011) Parametrized variational inequality approaches to generalized Nash equilibrium problems with shared constraints. Comput Optim Appl 48(3):423–452

    MathSciNet  MATH  Google Scholar 

  • Nash JF (1950) Equilibrium points in n-person games. Proc Nat Acad Sci 36(1):48–49

    MathSciNet  MATH  Google Scholar 

  • Nikaidô H, Isoda K (1955) Note on non-cooperative convex games. Pac J Math 5(Suppl. 1):807–815

    MathSciNet  MATH  Google Scholar 

  • Nocedal J, Wright SJ (2006) Numerical optimization. Springer, Berlin

    MATH  Google Scholar 

  • Pang J-S, Fukushima M (2005) Quasi-variational inequalities, generalized Nash equilibria, and multi-leader-follower games. CMS 2(1):21–56

    MathSciNet  MATH  Google Scholar 

  • Pang J-S, Tao M (2018) Decomposition methods for computing directional stationary solutions of a class of nonsmooth nonconvex optimization problems. SIAM J Optim 28(2):1640–1669

    MathSciNet  MATH  Google Scholar 

  • Pang J-S, Scutari G, Facchinei F, Wang C (2008) Distributed power allocation with rate constraints in Gaussian parallel interference channels. IEEE Trans Inf Theory 54(8):3471–3489

    MathSciNet  MATH  Google Scholar 

  • Pang J-S, Scutari G, Palomar DP, Facchinei F (2010) Design of cognitive radio systems under temperature-interference constraints: a variational inequality approach. IEEE Trans Signal Process 58(6):3251–3271

    MathSciNet  MATH  Google Scholar 

  • Parikh N, Boyd S (2014) Proximal algorithms. Found Trends Optim 1(3):127–239

    Google Scholar 

  • Rosen JB (1965) Existence and uniqueness of equilibrium points for concave n-person games. Econometrica 33(3):520–534

    MathSciNet  MATH  Google Scholar 

  • Sagratella S (2016) Computing all solutions of Nash equilibrium problems with discrete strategy sets. SIAM J Optim 26(4):2190–2218

    MathSciNet  MATH  Google Scholar 

  • Sagratella S (2017) Computing equilibria of Cournot oligopoly models with mixed-integer quantities. Math Methods Oper Res 86(3):549–565

    MathSciNet  MATH  Google Scholar 

  • Smith JM, Price GR (1973) The logic of animal conflict. Nature 246(5427):15

    MATH  Google Scholar 

  • Scutari G, Facchinei F, Pang J-S, Palomar DP (2014) Real and complex monotone communication games. IEEE Trans Inf Theory 60(7):4197–4231

    MathSciNet  MATH  Google Scholar 

  • Stein O, Sudermann-Merx N (2016) The cone condition and nonsmoothness in linear generalized Nash games. J Optim Theory Appl 170(2):687–709

    MathSciNet  MATH  Google Scholar 

  • Yi P, Pavel L (2017) A distributed primal-dual algorithm for computation of generalized Nash equilibria with shared affine coupling constraints via operator splitting methods. arXiv:1703.05388

Download references

Acknowledgements

The authors would like to thank the referees for comments and suggestions that pointed out a missing assumption in the proof and led to a better presentation of this work. This work was supported by an NSERC Discovery Accelerator Supplement, Grant Number 401285 of the second author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tangi Migot.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: Proof of Theorem 1

Theorem 5

Let \(\nu \in \{1,\dots ,N\}\). Assume that the GNEP satisfies Assumption 2.

Suppose that the tolerance and penalty parameters satisfy \(\epsilon _k \rightarrow 0^+\), \(\eta _k \rightarrow 0^+\) and \(\rho _k \rightarrow 0^+\). Let \(\{(x^k,\tilde{x}^k,\alpha ^k)\}\) be a sequence satisfying for all k: \(x^k\in X,\tilde{x}^k \in X\), \(\min (x^k-l_b,-\alpha ^k)=0\), \(\min (u_b-x^k,\alpha ^k)=0\), \(\Vert Q_\nu (x^k,\tilde{x}^k,\eta _k,\rho _k,\alpha ^k) \Vert \le \epsilon _k\) and \(\Vert x^k - \tilde{x}^{k} \Vert \le C\epsilon _k\) for some constant \(C>0\).

Then, if a limit point \(x^*\) of the sequence \(\{x^k\}\) is infeasible for (5) (i.e. \(c^\nu (x^*)\ne 0\)), it is a stationary point of the function

$$\Vert h^\nu (x),\max (g^\nu (x),0)\Vert ^2.$$

On the other hand, if a limit point \(x^*\) is feasible for (5) (i.e. \(c(x^*)=0\)) and the constraint gradients

$$\begin{aligned}&\{\nabla g^\nu _{i}(x^*)\,(i \in \mathcal {I}_\nu (x^*)), \nabla x_i\,(i \in \mathcal {A}(x^*)) \} \\&\quad \cup \{\{\nabla h^\nu _{i}(x^*)\,(i \in \mathcal {E}_\nu (x^*)), \nabla x^{-\nu }_i\,(i=1,\dots ,n_{-\nu })\}\} \end{aligned}$$

are positively linearly independent, then \(x^*\) is a KKT point for the problem (5). For such points, we have for any infinite subsequence \(\mathcal {K}\) such that \(\lim _{k \in \mathcal {K}} x^k =\lim _{k \in \mathcal {K}} \tilde{x}^k =x^*\) that \(\lim _{k \in \mathcal {K}} \alpha ^k =\alpha ^*\) and

$$\begin{aligned} \lim \limits _{k\in \mathcal {K}} \,&\frac{\max (0,g^\nu _{i}(x^k))}{\eta _k} = \lambda _i^*, \ i=1,\dots ,m_\nu ,\nonumber \\ \lim \limits _{k\in \mathcal {K}} \,&\frac{h^\nu _{i}(x^k)}{\eta _k} = \mu _i^*, \ i=1,\dots ,p_\nu , \nonumber \\ \lim \limits _{k\in \mathcal {K}}\,&\frac{\tilde{x}_i^{k,-\nu } - x^{k,-\nu }_i}{\rho _k} = \xi _i^*, \ i=1,\dots ,n, \end{aligned}$$
(10)

where \((\lambda ^*,\mu ^*,\xi ^*,\alpha ^*)\) is a Lagrange multiplier for (5).

Proof

The condition \(\Vert Q_\nu (x^k,\tilde{x}^k,\eta _k,\rho _k,\alpha ^k) \Vert \le \epsilon _k\) yields

$$\begin{aligned}&\left\| \nabla \theta _\nu (x^k)+ \sum _{i \notin \mathcal {I}_\nu (x^k)} \frac{\max (g^\nu _{i}(x^k),0)}{\eta _k}\nabla g^\nu _{i}(x^k) \right. +\sum _{i\notin \mathcal {E}_\nu (x^k)} \frac{h^\nu _{i}(x^k)}{\eta _k}\nabla h^\nu _{i}(x^k) \\&\qquad \qquad \left. + \sum _{i=1}^{n_{-\nu }} \frac{\tilde{x}^{k,-\nu }_i-x^{k,-\nu }_i}{\rho _k} \nabla x^{-\nu }_i + \alpha ^k\right\| \le \epsilon _k. \end{aligned}$$

By rearranging this expression (and in particular using \(\Vert a\Vert -\Vert b\Vert \le \Vert a+b\Vert\)) we obtain

$$\begin{aligned}&\left\| \sum _{i \notin \mathcal {I}_\nu (x^k)} \right. \left. \max (g^\nu _{i}(x^k),0) \nabla g^\nu _{i}(x^k) \right. +\sum _{i\notin \mathcal {E}_\nu (x^k)} h^\nu _{i}(x^k)\nabla h^\nu _{i}(x^k) \\&\qquad \qquad \left. + \sum _{i=1}^{n_{-\nu }} (\tilde{x}^{k,-\nu }_i-x^{k,-\nu }_i) \nabla x^{-\nu }_i \right\| \le \min (\eta _k,\rho _k)(\epsilon _k+\Vert \nabla \theta _\nu (x^k)+ \alpha ^k\Vert ). \end{aligned}$$

Let \(x^*\) be a limit point of the sequence \(\{ x^k \}\). Then there is a subsequence \(\mathcal {K}\) such that \(\lim _{k \in \mathcal {K}} x^k=\lim _{k \in \mathcal {K}} \tilde{x}^k=x^*\). When we take limits as \(k\rightarrow \infty\) for \(k \in \mathcal {K}\), the right-hand side approaches zero, because \((\eta _k,\rho _k) \rightarrow 0^+\) and \(\epsilon _k \rightarrow 0^+\). From the corresponding limit on the left-hand side we obtain

$$\begin{aligned} \sum _{i \notin \mathcal {I}_\nu (x^*)} \max (g^\nu _{i}(x^*),0)\nabla g^\nu _{i}(x^*)+\sum _{i\notin \mathcal {E}_\nu (x^*)} h^\nu _{i}(x^*)\nabla h^\nu _{i}(x^*)=0. \end{aligned}$$
(11)

We can have \(x^*\) infeasible, but in this case (11) implies that \(x^*\) is a stationary point of the function \(\Vert h_\nu (x),\max (g_\nu (x),0)\Vert ^2\).

If, on the other hand, the constraints gradient are positively linearly independent at a limit point \(x^*\), we have from (11) that \(x^*\) is feasible. Hence, the second and third condition in the KKT system (4) are satisfied. We need to check the first condition as well, and to show that the limit (10) holds. By definition of \(Q_\nu\) we have that

$$\begin{aligned} \nabla \theta _\nu (x^k)-Q_\nu (x^k,\tilde{x}^k,\eta _k,\rho _k,\alpha ^k)=&\sum _{i \notin \mathcal {I}_\nu (x^k)} \lambda ^k_i\nabla g^\nu _{i}(x^k) \\&+\sum _{i\notin \mathcal {E}_\nu (x^k)} \mu ^k_i\nabla h^\nu _{i}(x^k)+ \sum _{i=1}^{n_{-\nu }} \xi _i^k \nabla x^{-\nu }_i + \alpha ^k, \end{aligned}$$

where \(\lambda ^k_i=\frac{\max (g^\nu _{i}(x^k),0)}{\eta _k}\), \(\mu ^k_i=\frac{h^\nu _{i}(x^k)}{\eta _k}\) and \(\xi _i^k=\frac{\tilde{x}^{k,-\nu }_i-x^{k,-\nu }_i}{\rho _k}\). Let us prove by contradiction that the sequence \(\{\lambda ^k,\mu ^k,\xi ^k,\alpha ^k \}\) is bounded. If it were not bounded, there would exist a subsequence such that

$$\begin{aligned} \frac{(\lambda ^k,\mu ^k,\xi ^k,\alpha ^k)}{\Vert \lambda ^k,\mu ^k,\xi ^k,\alpha ^k \Vert _\infty } \rightarrow (\lambda ,\mu ,\xi ,\alpha ) \ne 0 \end{aligned}$$

Dividing by \(\Vert \lambda ^k,\mu ^k,\xi ^k,\alpha ^k \Vert _\infty\) and passing to the limit in the equation above,

$$\begin{aligned} 0= \sum _{i \notin \mathcal {I}_\nu (x^*)} \lambda _i\nabla g^\nu _{i}(x^*) +\sum _{i\notin \mathcal {E}_\nu (x^*)} \mu _i\nabla h^\nu _{i}(x^*)+ \sum _{i=1}^{n_{-\nu }} \xi _i \nabla x^{-\nu }_i + \alpha . \end{aligned}$$

By the positive linear independence assumption it follows that \((\lambda ,\mu ,\xi ,\alpha )=0\), which leads to a contradiction. Therefore, the sequence \(\{\lambda ^k,\mu ^k,\xi ^k,\alpha ^k \}\) is bounded. Hence by taking the limit as \(k \in \mathcal {K}\) goes to \(\infty\), we find that \(\lim _{k \in \mathcal {K}} \alpha ^k =\alpha ^*\) and

$$\begin{aligned} \lim \limits _{k\in \mathcal {K}}&\frac{\max (0,g^\nu _{i}(x^k))}{\eta _k} = \lambda _i^*, \ i=1,\dots ,m_\nu ,\\ \lim \limits _{k\in \mathcal {K}}&\frac{h^\nu _{i}(x^k)}{\eta _k} = \mu _i^*, \ i=1,\dots ,p_\nu , \\ \lim \limits _{k\in \mathcal {K}}&\frac{\tilde{x}_i^{k,-\nu } - x^{k,-\nu }_i}{\rho _k} = \xi _i^*, \ i=1,\dots ,n. \end{aligned}$$

By taking limits in \(\Vert Q_\nu (x^k,\tilde{x}^k,\eta _k,\rho _k,\alpha ^k) \Vert \le \epsilon _k\), we conclude that

$$\begin{aligned} -\nabla \theta _\nu (x^*)= \sum _{i \notin \mathcal {I}_\nu (x^*)} \lambda ^*_i\nabla g^\nu _{i}(x^*) +\sum _{i\notin \mathcal {E}_\nu (x^*)} \mu ^*_i\nabla h^\nu _{i}(x^*)+ \sum _{i=1}^{n_{-\nu }} \xi _i^* \nabla x^{-\nu }_i + \alpha ^*. \end{aligned}$$

Hence, \(x^*\) is a KKT point for (5) with Lagrange multiplier \((\lambda ^*,\mu ^*,\xi ^*,\alpha ^*)\). \(\square\)

Appendix 2: Notations

We sum up here the notations used throughout the paper. We refer the reader to the Sect. 2 for notations relative to the GNEP (Table 2).

Table 2 Notations

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Migot, T., Cojocaru, MG. A decomposition method for a class of convex generalized Nash equilibrium problems. Optim Eng 22, 1653–1679 (2021). https://doi.org/10.1007/s11081-020-09578-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11081-020-09578-9

Keywords

Navigation