Skip to main content
Log in

Some aspects on the computational implementation of diverse terms arising in mixed virtual element formulations

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In the present paper, we describe the computational implementation of some integral terms that arise from mixed virtual element methods (mixed-VEM) in two-dimensional pseudostress-velocity formulations. The implementation presented here considers any polynomial degree k ≥ 0 in a natural way by building several local matrices of small size through the matrix multiplication and the Kronecker product. In particular, we apply the foregoing mentioned matrices to the Navier-Stokes equations with Dirichlet boundary conditions, whose mixed-VEM formulation was originally proposed and analyzed in a recent work using virtual element subspaces for H(div) and H1, simultaneously. In addition, an algorithm is proposed for the assembly of the associated global linear system for Newton’s iteration. Finally, we present a numerical example in order to illustrate the performance of the mixed-VEM scheme and confirm the expected theoretical convergence rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Beirão da Veiga, L., Brezzi, F., Cangiani, A., Marini, L.D., Manzini, G., Russo, A.: Basic principles of virtual elements methods. Math. Models Methods Appl. Sci. 23(1), 199–214 (2013)

    Article  MathSciNet  Google Scholar 

  2. Beirão da Veiga, L., Brezzi, F., Marini, L D, Russo, A.: The hitchhiker’s guide to the virtual element method. Math. Models Methods Appl. Sci. 24(8), 1541–1573 (2014)

    Article  MathSciNet  Google Scholar 

  3. Brezzi, F., Falk, R.S., Marini, L.D.: Basic principles of mixed virtual element methods. ESAIM Math. Modell. Numer. Anal. 48(4), 1227–1240 (2014)

    Article  MathSciNet  Google Scholar 

  4. Beirão da Veiga, L., Brezzi, F., Marini, L., Manzini, G., Russo, A.: H(div) and H(curl)-conforming virtual element method. Numer. Math. 133(2), 303–332 (2016)

    Article  MathSciNet  Google Scholar 

  5. Beirão da Veiga, L., Brezzi, F., Marini, L., Russo, A.: Mixed virtual element methods for general second order elliptic problems on polygonal meshes. ESAIM Math. Modell. Numer. Anal. 50(3), 727–747 (2016)

    Article  MathSciNet  Google Scholar 

  6. Cáceres, E., Gatica, G N: A mixed virtual element method for the pseudostress-velocity formulation of the Stokes problem. IMA J. Numer. Anal. 37(1), 296–331 (2017)

    Article  MathSciNet  Google Scholar 

  7. Cáceres, E., Gatica, G.N., Sequeira, F.A.: A mixed virtual element method for the Brinkman problem. Math. Models Methods Appl. Sci. 27(4), 707–743 (2017)

    Article  MathSciNet  Google Scholar 

  8. Gatica, G.N., Munar, M., Sequeira, F.A.: A mixed virtual element method for the Navier-Stokes equations. Math. Models Methods Appl. Sci. 28 (14), 2719–2762 (2018)

    Article  MathSciNet  Google Scholar 

  9. Gatica, G.N., Munar, M., Sequeira, F.A.: A mixed virtual element method for a nonlinear Brinkman model of porous media flow. Calcolo 55(2), 21 (2018)

    Article  MathSciNet  Google Scholar 

  10. Antonietti, P.F., Beirão da Veiga, L., Mora, D., Verani, M.: A stream virtual element formulation of the Stokes problem on polygonal meshes. SIAM J. Numer. Anal. 52(1), 386–404 (2014)

    Article  MathSciNet  Google Scholar 

  11. Beirão da Veiga, L., Brezzi, F., Marini, L.D.: Virtual elements for linear elasticity problems. SIAM J. Numer. Anal. 51(2), 794–812 (2013)

    Article  MathSciNet  Google Scholar 

  12. Brezzi, F., Marini, L.D.: Virtual element methods for plate bending problems. Comput. Methods Appl. Mech. Eng. 253, 455–462 (2013)

    Article  MathSciNet  Google Scholar 

  13. Gain, A.L., Talischi, C., Paulino, G.H.: On the virtual element method for three-dimensional linear elasticity problems on arbitrary polyhedral meshes. Comput. Methods Appl. Mech. Eng. 282, 132–160 (2014)

    Article  MathSciNet  Google Scholar 

  14. Cangiani, A., Chatzipantelidis, P., Diwan, G., Georgoulis, E.H.: Virtual element method for quasilinear elliptic problems. IMA J. Numer. Anal. 40(4), 2450–2472 (2020)

    Article  MathSciNet  Google Scholar 

  15. Munar, M., Sequeira, F.A.: A posteriori error analysis of a mixed virtual element method for a nonlinear Brinkman model of porous media flow. Comput. Math. Appl. 80(5), 1240–1259 (2020)

    Article  MathSciNet  Google Scholar 

  16. Beirão da Veiga, L., Brezzi, F., Marini, L.D., Russo, A.: Virtual element implementation for general elliptic equations. Buil. Bridg. Connect. Challeng. Modern Approach. Numer. Partial Differ. Equ. 114(1), 39–71 (2016)

    MathSciNet  MATH  Google Scholar 

  17. Beirão da Veiga, L., Lovadina, C., Vacca, G.: Virtual elements for the Navier-Stokes problem on polygonal meshes. SIAM J. Numer. Anal. 56 (3), 1210–1242 (2018)

    Article  MathSciNet  Google Scholar 

  18. Cáceres, E.: Mixed Virtual Element Methods. Applications in Fluid Mechanics. Thesis leading to the professional title of Mathematical Civil Engineer, Universidad de Concepción, Chile (2015)

  19. Sutton, O.J.: The virtual element method in 50 lines of MATLAB. Numer. Algorithm. 75(4), 1141–1159 (2017)

    Article  MathSciNet  Google Scholar 

  20. Guillén-Oviedo, H., Sequeira, F.A.: Una implementación computacional del método VEM mixto para el problema de Brinkman en 2D. Rev. Matem. Teoría Apl. 26(2), 215–251 (2019)

    Google Scholar 

  21. Ahmad, B., Alsaedi, A., Brezzi, F., Marini, L.D., Russo, A.: Equivalent projectors for virtual element methods. Comput. Math. Appl. 66(3), 376–391 (2013)

    Article  MathSciNet  Google Scholar 

  22. Beirão da Veiga, L., Brezzi, F., Marini, L., Russo, A.: Virtual element method for general second-order elliptic problems on polygonal meshes. Math. Models Methods Appl. Sci. 26(4), 729–750 (2016)

    Article  MathSciNet  Google Scholar 

  23. Beirão da Veiga, L, Brezzi, F., Marini, L., Russo, A.: Serendipity face and edge VEM spaces. Atti Della Accad. Nazl Lincei. Rend. Lincei. Mat. Appl. 28(1), 143–180 (2017)

    Article  MathSciNet  Google Scholar 

  24. Cáceres, E., Gatica, G.N., Sequeira, F.A.: A mixed virtual element method for a pseudostress-based formulation of linear elasticity. Appl. Numer. Math. 135, 423–442 (2019)

    Article  MathSciNet  Google Scholar 

  25. Cáceres, E, Gatica, G.N., Sequeira, F.A.: A mixed virtual element method for quasi-Newtonian Stokes flows. SIAM J. Numer. Anal. 56(1), 317–343 (2018)

    Article  MathSciNet  Google Scholar 

  26. Gatica, G.N., Munar, M., Sequeira, F.A.: A mixed virtual element method for the Boussinesq problem on polygonal meshes. J. Comput. Math. to appear

  27. Sommariva, A., Vianello, M.: Product Gauss cubature over polygons based on Green’s integration formula. BIT Numer. Math. 47(2), 441–453 (2007)

    Article  MathSciNet  Google Scholar 

  28. Mousavi, S.E., Sukumar, N.: Numerical integration of polynomials and discontinuous functions on irregular convex polygons and polyhedrons. Comput. Mech. 47(5), 535–554 (2011)

    Article  MathSciNet  Google Scholar 

  29. Chin, E.B., Lasserre, J.B., Sukumar, N.: Numerical integration of homogeneous functions on convex and nonconvex polygons and polyhedra. Comput. Mech. 56(6), 967–981 (2015)

    Article  MathSciNet  Google Scholar 

  30. Camaño, J., Gatica, G.N., Oyarzúa, R., Tierra, G.: An augmented mixed finite element method for the Navier-Stokes equations with variable viscosity. SIAM J. Numer. Anal. 54(2), 1069–1092 (2016)

    Article  MathSciNet  Google Scholar 

  31. Camaño, J., Oyarzúa, R., Tierra, G.: Analysis of an augmented mixed-FEM for the Navier-Stokes problem. Math. Comput. 86(304), 589–615 (2017)

    Article  MathSciNet  Google Scholar 

  32. Colmenares, E., Gatica, G.N., Oyarzúa, R.: Analysis of an augmented mixed-primal formulation for the stationary Boussinesq problem. Numer. Methods Partial Differ. Equ. 32(2), 445–478 (2016)

    Article  MathSciNet  Google Scholar 

  33. Kovasznay, L.I.G.: Laminar flow behind a two-dimensional grid. Math. Proc. Camb. Philos. Soc. 44, 58–62 (1948)

    Article  MathSciNet  Google Scholar 

  34. Cangiani, A., Georgoulis, E.H., Pryer, T., Sutton, O.J.: A posteriori error estimates for the virtual element method. Numer. Math. 137, 857–893 (2017)

    Article  MathSciNet  Google Scholar 

  35. Castillo, P.E., Sequeira, F.A.: Computational aspects of the local discontinuous Galerkin method on unstructured grids in three dimensions. Math. Comput. Model. 57(9-10), 2279–2288 (2013)

    Article  MathSciNet  Google Scholar 

  36. Guillén-Oviedo, H., Ramírez, J., Segura, E., Sequeira, F.A.: Description and implementation of an algebraic multigrid preconditioner for H1-conforming finite element schemes. Uniciencia 34(2), 55–81 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Gabriel N. Gatica, CI2MA, and Departamento de Ingeniería Matemática, Universidad de Concepción, Chile, for his suggestions that significantly influenced the organization of this paper.

Funding

The work of Filánder A. Sequeira was partially supported by Universidad Nacional, Costa Rica, through the project 0103-18.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filánder A. Sequeira.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sequeira, F.A., Guillén-Oviedo, H. Some aspects on the computational implementation of diverse terms arising in mixed virtual element formulations. Numer Algor 89, 487–528 (2022). https://doi.org/10.1007/s11075-021-01123-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-021-01123-8

Keywords

Navigation