Skip to main content
Log in

A mixed virtual element method for a nonlinear Brinkman model of porous media flow

  • Published:
Calcolo Aims and scope Submit manuscript

Abstract

In this work we introduce and analyze a mixed virtual element method for the two-dimensional nonlinear Brinkman model of porous media flow with non-homogeneous Dirichlet boundary conditions. For the continuous formulation we consider a dual-mixed approach in which the main unknowns are given by the gradient of the velocity and the pseudostress, whereas the velocity itself and the pressure are computed via simple postprocessing formulae. In addition, because of analysis reasons we add a redundant term arising from the constitutive equation relating the pseudostress and the velocity, so that the well-posedness of the resulting augmented formulation is established by using known results from nonlinear functional analysis. Then, we introduce the main features of the mixed virtual element method, which employs an explicit piecewise polynomial subspace and a virtual element subspace for approximating the aforementioned main unknowns, respectively. In turn, the associated computable discrete nonlinear operator is defined in terms of the \(\mathbb {L}^2\)-orthogonal projector onto a suitable space of polynomials, which allows the explicit integration of the terms involving deviatoric tensors that appear in the original setting. Next, we show the well-posedness of the discrete scheme and derive the associated a priori error estimates for the virtual element solution as well as for the fully computable projection of it. Furthermore, we also introduce a second element-by-element postprocessing formula for the pseudostress, which yields an optimally convergent approximation of this unknown with respect to the broken \(\mathbb {H}(\mathbf {div})\)-norm. Finally, several numerical results illustrating the good performance of the method and confirming the theoretical rates of convergence are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ahmad, B., Alsaedi, A., Brezzi, F., Marini, L.D., Russo, A.: Equivalent projectors for virtual element methods. Comput. Math. Appl. 66, 376–391 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Antonietti, P.F., Beirão da Veiga, L., Mora, D., Verani, M.: A stream virtual element formulation of the Stokes problem on polygonal meshes. SIAM J. Numer. Anal. 52, 386–404 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  3. Beirão da Veiga, L., Brezzi, F., Cangiani, A., Manzini, G., Marini, L.D., Russo, A.: Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23, 199–214 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Beirão da Veiga, L., Brezzi, F., Marini, L.D., Russo, A.: \({H}(\div )\) and \({H}({\rm curl})\)-conforming virtual element method. Numer. Math. 133, 303–332 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Beirão da Veiga, L., Brezzi, F., Marini, L.D., Russo, A.: Mixed virtual element methods for general second order elliptic problems on polygonal meshes. ESAIM Math. Model. Numer. Anal. 50, 727–747 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Beirão da Veiga, L., Lovadina, C., Vacca, G.: Divergence free virtual elements for the Stokes problem on polygonal meshes. ESAIM Math. Model. Numer. Anal. 51, 509–535 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. Beirão da Veiga, L., Lovadina, C., Vacca, G.: Virtual elements for the Navier-Stokes problem on polygonal meshes. SIAM J. Numer. Anal. 56, 1210–1242 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  8. Beirão da Veiga, L., Mora, D., Rivera, G., Rodríguez, R.: A virtual element method for the acoustic vibration problem. Numer. Math. 136, 725–763 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, New York (1991)

    Book  MATH  Google Scholar 

  10. Brezzi, F., Falk, R.S., Marini, L.D.: Basic principles of mixed virtual element methods. ESAIM Math. Model. Numer. Anal. 48, 1227–1240 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cáceres, E., Gatica, G.N.: A mixed virtual element method for the pseudostress-velocity formulation of the Stokes problem. IMA J. Numer. Anal. 37, 296–331 (2017)

    Article  MathSciNet  Google Scholar 

  12. Cáceres, E., Gatica, G.N., Sequeira, F.A.: A mixed virtual element method for the Brinkman problem. Math. Models Methods Appl. Sci. 27, 707–743 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cáceres, E., Gatica, G.N., Sequeira, F.A.: A mixed virtual element method for quasi-Newtonian Stokes flows. SIAM J. Numer. Anal. 56, 317–343 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  14. Camaño, J., Gatica, G.N., Oyarzúa, R., Tierra, G.: An augmented mixed finite element method for the Navier–Stokes equations with variable viscosity. SIAM J. Numer. Anal. 54, 1069–1092 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Camaño, J., Gatica, G.N., Oyarzúa, R., Ruiz-Baier, R.: An augmented stress-based mixed finite element method for the steady state Navier–Stokes equations with nonlinear viscosity. Numer. Methods Partial Differ. Equ. 33, 1692–1725 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Camaño, J., Oyarzúa, R., Tierra, G.: Analysis of an augmented mixed-FEM for the Navier–Stokes problem. Math. Comp. 86, 589–615 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Cangiani, A., Gyrya, V., Manzini, G.: The nonconforming virtual element method for the Stokes equations. SIAM J. Numer. Anal. 54, 3411–3435 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gatica, G.N., Sequeira, F.A.: Analysis of an augmented HDG method for a class of quasi-Newtonian Stokes flows. J. Sci. Comput. 65, 1270–1308 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gatica, G.N., Sequeira, F.A.: A priori and a posteriori error analyses of an augmented HDG method for a class of quasi-Newtonian Stokes flows. J. Sci. Comput. 69, 1192–1250 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gatica, G.N., González, M., Meddahi, S.: A low-order mixed finite element method for a class of quasi-Newtonian Stokes flows. Part I: a priori error analysis. Comput. Methods Appl. Mech. Eng. 193, 881–892 (2004)

    Article  MATH  Google Scholar 

  21. Gatica, G.N., Márquez, A., Sánchez, M.A.: A priori and a posteriori error analyses of a velocity-pseudostress formulation for a class of quasi-Newtonian Stokes flows. Comput. Methods Appl. Mech. Eng. 200, 1619–1636 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gatica, G.N., Gatica, L.F., Márquez, A.: Analysis of a pseudostress-based mixed finite element method for the Brinkman model of porous media flow. Numer. Math. 126, 635–677 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gatica, G.N., Gatica, L.F., Sequeira, F.A.: Analysis of an augmented pseudostress-based mixed formulation for a nonlinear Brinkman model of porous media flow. Comput. Methods Appl. Mech. Engrg. 289, 104–130 (2015)

    Article  MathSciNet  Google Scholar 

  24. Gatica, G.N., Gatica, L.F., Sequeira, F.A.: A \(\mathbb{R}\mathbb{T}_k-\mathbf{P}_k\) approximation for linear elasticity yielding a broken \(\mathbb{H}(\mathbf{div})\) convergent postprocessed stress. Appl. Math. Lett. 49, 133–140 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gatica, G.N., Gatica, L.F., Sequeira, F.A.: A priori and a posteriori error analyses of a pseudostress-based mixed formulation for linear elasticity. Comput. Math. Appl. 71, 585–614 (2016)

    Article  MathSciNet  Google Scholar 

  26. Gatica, G.N., Munar, M., Sequeira, F.A. (2017) A mixed virtual element method for the Navier–Stokes equations. Preprint 2017-23, Centro de Investigación en Ingeniería Matemática, Universidad de Concepción. http://www.ci2ma.udec.cl/publicaciones/prepublicaciones/

  27. Howell, J.S.: Dual-mixed finite element approximation of Stokes and nonlinear Stokes problems using trace-free velocity gradients. J. Comput. Appl. Math. 231, 780–792 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Loula, A.F.D., Guerreiro, J.N.C.: Finite element analysis of nonlinear creeping flows. Comput. Methods Appl. Mech. Eng. 79, 87–109 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  29. Sandri, D.: Sur l’approximation numérique des écoulements quasi-newtoniens dont la viscosité suit la loi puissance ou la loi de Carreau. RAIRO Modél. Math. Anal. Numér. Anal. 27, 131–155 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  30. Vacca, G.: An \({H}^1\)-conforming virtual element for Darcy and Brinkman equations. Math. Models Methods Appl. Sci 28, 159–194 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zeidler, E.: Nonlinear Functional Analysis and its Applications II/B: Nonlinear Monotone Operators. Springer, New York (1990)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel N. Gatica.

Additional information

This work was partially supported by CONICYT-Chile through BASAL project CMM, Universidad de Chile, and the Becas-CONICYT Programme for foreign students; by Centro de Investigación en Ingeniería Matemática (CI\(^2\)MA), Universidad de Concepción; and by Universidad Nacional (Costa Rica), through the Project 0106-16.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gatica, G.N., Munar, M. & Sequeira, F.A. A mixed virtual element method for a nonlinear Brinkman model of porous media flow. Calcolo 55, 21 (2018). https://doi.org/10.1007/s10092-018-0262-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10092-018-0262-7

Keywords

Mathematics Subject Classification

Navigation