Skip to main content
Log in

A method of fundamental solutions for heat and wave propagation from lateral Cauchy data

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We derive a method of fundamental solutions (MFS) for the numerical solution of an ill-posed lateral Cauchy problem for the hyperbolic wave equation in bounded planar annular domains. The Laguerre transform is applied to reduce the time-dependent lateral Cauchy problem to a sequence of elliptic Cauchy problems with a known set of fundamental solutions termed a fundamental sequence. The solution of the elliptic problems is approximated by linear combinations of the elements in the fundamental sequence. Source points are placed outside of the solution domain, and by collocating on the boundary of the solution domain itself a sequence of linear equations is obtained for finding the coefficients in the MFS approximation. It is shown that the fundamental solutions used constitute a linearly independent and dense set on the boundary of the solution domain with respect to the L2-norm. Tikhonov regularization is applied to get a stable solution to the obtained systems of linear equations in combination with the L-curve rule for selecting the regularization parameter. Numerical results confirm the efficiency and applicability of the proposed strategy for the considered lateral Cauchy problem both in the case of exact and noisy data. Adjusting the coefficients in the sequence of elliptic equations, the similar strategy and results apply also to the parabolic lateral Cauchy problem as verified by an included numerical example. It is also shown that by adjusting the coefficients further the method of Rothe can be applied as an alternative to the Laguerre transformation in time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abate, J., Choudhury, G.L., Whitt, W.: On the Laguerre method for numerically inverting Laplace transforms. INFORMS J. Comput. 8, 413–427 (1996)

    Article  Google Scholar 

  2. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover Publications, New York (1972)

    MATH  Google Scholar 

  3. Alessandrini, G., Rondi, L., Rosset, E., Vessella, S.: The stability for the Cauchy problem for elliptic equations. Inverse Probl. 25, 123004 (2009)

    Article  MathSciNet  Google Scholar 

  4. Alves, C.J.S.: On the choice of source points in the method of fundamental solutions. Eng. Anal. Bound Elem. 33, 1348–1361 (2009)

    Article  MathSciNet  Google Scholar 

  5. Alves, C.J.S., Martins, N.F.M., Valtchev, S.S.: Domain decomposition methods with fundamental solutions for Helmholtz problems with discontinuous source terms. Comput. Math. Appl. 88, 16–32 (2018). (in press)

    Article  MathSciNet  Google Scholar 

  6. Amirov, A., Yamamoto, M.: A timelike Cauchy problem and an inverse problem for general hyperbolic equations. Appl. Math. Lett. 21, 885–891 (2008)

    Article  MathSciNet  Google Scholar 

  7. Bécache, E., Bourgeois, L., Franceschini, L., Dardé, J.: Application of mixed formulations of quasi-reversibility to solve ill-posed problems for heat and wave equations: the 1D case. Inverse Probl. Imaging 9, 971–1002 (2015)

    Article  MathSciNet  Google Scholar 

  8. Bellman, R., Kalaba, R.E., Lockett, J.A.: Numerical Inversion of the Laplace Transform: Applications to Biology, Economics, Engineering and Physics. American Elsevier Publishing Co., Inc., New York (1966)

    MATH  Google Scholar 

  9. Bogomolny, A.: Fundamental solutions method for elliptic boundary value problems. SIAM J. Numer. Anal. 22, 644–669 (1985)

    Article  MathSciNet  Google Scholar 

  10. Borachok, I., Chapko, R., Johansson, B.T.: Numerical solution of a Cauchy problem for Laplace equation in 3-dimensional domains by integral equations. Inverse Probl Sci. Eng. 24, 1550–1568 (2016)

    Article  MathSciNet  Google Scholar 

  11. Borachok, I., Chapko, R., Johansson, B.T.: Numerical solution of an elliptic 3-dimensional Cauchy problem by the alternating method and boundary integral equations. J. Inverse Ill-Posed Probl. 24, 711–725 (2016)

    Article  MathSciNet  Google Scholar 

  12. Buchukuri, T., Chkadua, O., Natroshvili, D.: Method of fundamental solutions for mixed and crack type problems in the classical theory of elasticity. Trans. A. Razmadze Math. Inst. 171, 264–292 (2017)

    Article  MathSciNet  Google Scholar 

  13. Chapko, R., Johansson, B.T.: A boundary integral equation method for numerical solution of parabolic and hyperbolic Cauchy problems. Appl. Numer. Math. 129, 104–119 (2018)

    Article  MathSciNet  Google Scholar 

  14. Chapko, R., Johansson, B.T.: On the numerical solution of a Cauchy problem for the Laplace equation via a direct integral equation approach. Inverse Probl. Imaging 6, 25–36 (2012)

    Article  MathSciNet  Google Scholar 

  15. Chapko, R., Johansson, B.T., Muzychuk, Y., Hlova, A.: Wave propagation from lateral Cauchy data using a boundary element method. Wave Motion 91, 102385 (2019)

    Article  MathSciNet  Google Scholar 

  16. Chapko, R., Kress, R.: On the numerical solution of initial boundary value problems by the Laguerre transformation and boundary integral equations. Integr. Integrodifferential Equ. Theory Methods Appl. Ser. Math. Anal. Appl. 2, 55–69 (2000)

    MathSciNet  MATH  Google Scholar 

  17. Chen, B., Guo, Y., Ma, F., Sun, Y.: Numerical schemes to reconstruct three-dimensional time-dependent point sources of acoustic waves. Inverse Probl. 36, 075009 (2020)

    Article  MathSciNet  Google Scholar 

  18. Chen, C.S., Reutskiy, S.Y., Rozov, V.Y.: The method of the fundamental solutions and its modifications for electromagnetic field problems. Assist. Mech. Eng. Sci. 16, 21–33 (2009)

    MathSciNet  Google Scholar 

  19. Cheng, A.H.D., Hong, Y.: An overview of the method of fundamental solutions—solvability, uniqueness, convergence, and stability. Eng. Anal. Bound. Elem. 120, 118–152 (2020)

    Article  MathSciNet  Google Scholar 

  20. Cohen, A.M.: Numerical Methods for Laplace Transform Inversion. Springer, Berlin (2007)

    MATH  Google Scholar 

  21. Eldén, L.: Numerical solution of the sideways heat equation. In: Engl, H., Rundell, W. (eds.) Inverse Problems in Diffusion Processes, pp 130–150. SIAM, Philadelphia (1995)

  22. Fairweather, G., Karageorghis, A.: The method of fundamental solutions for elliptic boundary value problems. Adv. Comput. Math. 9, 69–95 (1998)

    Article  MathSciNet  Google Scholar 

  23. Golberg, M.A., Chen, C.S.: The method of fundamental solutions for potential Helmholtz and diffusion problems. In: Golberg, M.A. (ed.) Boundary Integral Methods: Numerical and Mathematical Aspects, pp 103–176. WIT Press/Comput. Mech. Publ, Boston (1999)

  24. Golberg, M.A., Chen, C.S., Muleshkov, A.S.: The method of fundamental solutions for time-dependent problems. In: Brebia, C.S., Chen C.A., Pepper, D.W. (eds.) Boundary Element Technology XIII, pp 377–386. WIT Press, Southampton (1999)

  25. Gu, M.H., Young, D.L., Fan, C.M.: The method of fundamental solutions for one-dimensional wave equations. CMC Comput. Mater. Continua 11, 185–208 (2009)

    Google Scholar 

  26. Gu, M.H., Fan, C.M., Young, D.L.: The method of fundamental solutions for the multi-dimensional wave equations. J. Mar. Sci. Technol. 19, 586–595 (2011)

    Article  Google Scholar 

  27. Isakov, V.: Inverse Problems for Partial Differential Equations, 3rd edn. Springer-Verlag, Cham (2017)

    Book  Google Scholar 

  28. Johansson, B.T., Lesnic, D.: A method of fundamental solutions for transient heat conduction. Eng. Anal. Bound. Elem. 32, 697–703 (2008)

    Article  Google Scholar 

  29. Karageorghis, A., Lesnic, D., Marin, L.: A survey of applications of the MFS to inverse problems. Inv. Pr. Sci. Engn. 19, 309–336 (2011)

    MathSciNet  MATH  Google Scholar 

  30. Keilson, J., Nunn, W.R.: Laguerre transformation as a tool for the numerical solution of integral equations of convolution type. Appl. Math. Comput. 5, 313–359 (1979)

    MathSciNet  MATH  Google Scholar 

  31. Kirsch, A.: An Introduction to the Mathematical Theory of Inverse Problems. Springer, Berlin (2011)

    Book  Google Scholar 

  32. Klibanov, M., Rakesh: Numerical solution of a time-like Cauchy problem for the wave equation. Math Methods Appl. Sci 15, 559–570 (1992)

    Article  MathSciNet  Google Scholar 

  33. Kupradze, V.D.: A method for the approximate solution of limiting problems in mathematical physics. USSR Comput. Maths. Math. Phys. 4, 199–205 (1964)

    Article  MathSciNet  Google Scholar 

  34. Lavers, J.D., Wang, J.: On the determination of the locations for the virtual sources in the method of fundamental solutions for eddy current problems. IEEE T. Magn. 31, 3512–3514 (1995)

    Article  Google Scholar 

  35. Lesnic, D., Marin, L.: The method of fundamental solutions for Cauchy problem associated with two-dimensional Helmholtz equations. Comput. Struct. 83, 267–278 (2005)

    Article  MathSciNet  Google Scholar 

  36. Li, Z.C.: The method of fundamental solutions for annular shaped domains. J. Comput. Appl. Math. 228, 355–372 (2009)

    Article  MathSciNet  Google Scholar 

  37. Lions, J.-L., Magenes, E.: Non-homogeneous boundary value problems and applications. Springer-Verlag, New York-Heidelberg I (1972)

    Book  Google Scholar 

  38. Schreck, C., Hafner, C., Wojtan, C.: Fundamental solutions for water wave animation. ACM Trans. Graph. (TOG) 38, 1–14 (2019)

    Article  Google Scholar 

  39. Shigeta, T., Young, D.L.: Method of fundamental solutions with optimal regularization techniques for the Cauchy problem of the Laplace equation with singular points. J. Comput. Phys. 228, 1903–1915 (2008)

    Article  MathSciNet  Google Scholar 

  40. Smyrlis, Y.G.: Applicability and applications of the method of fundamental solutions. Math. Comput. 78, 1399–1434 (2009)

    Article  MathSciNet  Google Scholar 

  41. Tataru, D.: On the regularity of boundary traces for the wave equation. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 4, 185–206 (1998)

    MathSciNet  MATH  Google Scholar 

  42. Young, D.L., Gu, M.H., Fan, C.M.: The time-marching method of fundamental solutions for wave equations. Eng. Anal. Bound Elem. 33, 1411–1425 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ihor Borachok.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borachok, I., Chapko, R. & Johansson, B.T. A method of fundamental solutions for heat and wave propagation from lateral Cauchy data. Numer Algor 89, 431–449 (2022). https://doi.org/10.1007/s11075-021-01120-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-021-01120-x

Keywords

Navigation