Skip to main content
Log in

On two-subspace randomized extended Kaczmarz method for solving large linear least-squares problems

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

For solving the large-scale linear least-squares problem, we propose a block version of the randomized extended Kaczmarz method, called the two-subspace randomized extended Kaczmarz method, which does not require any row or column paving. Theoretical analysis and numerical results show that the two-subspace randomized extended Kaczmarz method is much more efficient than the randomized extended Kaczmarz method. When the coefficient matrix is of full column rank, the two-subspace randomized extended Kaczmarz method can also outperform the randomized coordinate descent method. If the linear system is consistent, we remove one of the iteration sequences in the two-subspace randomized extended Kaczmarz method, which approximates the projection of the right-hand side vector onto the orthogonal complement space of the range space of the coefficient matrix, and obtain the generalized two-subspace randomized Kaczmarz method, which is actually a generalization of the two-subspace randomized Kaczmarz method without the assumptions of unit row norms and full column rank on the coefficient matrix. We give the upper bound for the convergence rate of the generalized two-subspace randomized Kaczmarz method which also leads to a better upper bound for the convergence rate of the two-subspace randomized Kaczmarz method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bai, Z.-Z., Liu, X.-G.: On the Meany inequality with applications to convergence analysis of several row-action iteration methods. Numer. Math. 124, 215–236 (2013)

    Article  MathSciNet  Google Scholar 

  2. Bai, Z.-Z., Wang, L., Wu, W.-T.: On convergence rate of the randomized Gauss-Seidel method. Linear Algebra Appl. 611, 237–252 (2021)

    Article  MathSciNet  Google Scholar 

  3. Bai, Z.-Z., Wu, W.-T.: On greedy randomized Kaczmarz method for solving large sparse linear systems. SIAM J. Sci. Comput. 40, A592–A606 (2018)

    Article  MathSciNet  Google Scholar 

  4. Bai, Z. -Z., Wu, W. -T.: On relaxed greedy randomized Kaczmarz methods for solving large sparse linear systems. Appl. Math. Lett. 83, 21–26 (2018)

    Article  MathSciNet  Google Scholar 

  5. Bai, Z.-Z., Wu, W.-T.: On convergence rate of the randomized Kaczmarz method. Linear Algebra Appl. 553, 252–269 (2018)

    Article  MathSciNet  Google Scholar 

  6. Bai, Z.-Z., Wu, W.-T.: On greedy randomized coordinate descent methods for solving large linear least-squares problems. Numer. Linear Algebra Appl. 26, e2237, 1–15 (2019)

    Article  MathSciNet  Google Scholar 

  7. Bai, Z.-Z., Wu, W.-T.: On partially randomized extended Kaczmarz method for solving large sparse overdetermined inconsistent linear systems. Linear Algebra Appl. 578, 225–250 (2019)

    Article  MathSciNet  Google Scholar 

  8. Byrne, C.: A unified treatment of some iterative algorithms in signal processing and image reconstruction. Inverse Problems 20, 103–120 (2004)

    Article  MathSciNet  Google Scholar 

  9. Censor, Y.: Row-action methods for huge and sparse systems and their applications. SIAM Rev. 23, 444–466 (1981)

    Article  MathSciNet  Google Scholar 

  10. Chen, J.-Q., Huang, Z.-D.: On the error estimate of the randomized double block Kaczmarz method. Appl. Math. Comput. 370, 124907, 1–11 (2020)

    MathSciNet  MATH  Google Scholar 

  11. Davis, T.A., Hu, Y.: The University of Florida sparse matrix collection. ACM Trans. Math. Software 38, Art. 1, 1–25 (2011)

    MathSciNet  MATH  Google Scholar 

  12. Du, K.: Tight upper bounds for the convergence of the randomized extended Kaczmarz and Gauss-Seidel algorithms. Numer. Linear Algebra Appl. 26, e2233, 1–14 (2019)

    Article  MathSciNet  Google Scholar 

  13. Galántai, A.: Projectors and Projection Methods. Kluwer Academic Publishers, Norwell (2004)

    Book  Google Scholar 

  14. Gower, R.M., Richtárik, P.: Stochastic dual ascent for solving linear systems, arXiv:1512.06890, 1–28 (2015)

  15. Hansen, P.C., Jørgensen, J.S.: AIR Tools II: Algebraic iterative reconstruction methods, improved implementation. Numer. Algorithms 79, 107–137 (2018)

    Article  MathSciNet  Google Scholar 

  16. Herman, G. T.: Fundamentals of Computerized Tomography: Image Reconstruction from Projections, 2nd edn. Springer, Dordrecht (2009)

    Book  Google Scholar 

  17. Kaczmarz, S.: Angenäherte Auflösung von Systemen linearer Gleichungen. Bull. Int. Acad. Polon. Sci. Lett. A 35, 355–357 (1937)

    MATH  Google Scholar 

  18. Leventhal, D., Lewis, A.S.: Randomized methods for linear constraints: Convergence rates and conditioning. Math. Oper. Res. 35, 641–654 (2010)

    Article  MathSciNet  Google Scholar 

  19. Ma, A., Needell, D., Ramdas, A.: Convergence properties of the randomized extended Gauss-Seidel and Kaczmarz methods. SIAM J. Matrix Anal. Appl. 36, 1590–1604 (2015)

    Article  MathSciNet  Google Scholar 

  20. Natterer, F.: The Mathematics of Computerized Tomography. SIAM, Philadelphia (2001)

    Book  Google Scholar 

  21. Needell, D.: Randomized Kaczmarz solver for noisy linear systems. BIT 50, 395–403 (2010)

    Article  MathSciNet  Google Scholar 

  22. Needell, D., Tropp, J.A.: Paved with good intentions: Analysis of a randomized block Kaczmarz method. Linear Algebra Appl. 441, 199–221 (2014)

    Article  MathSciNet  Google Scholar 

  23. Needell, D., Ward, R.: Two-subspace projection method for coherent overdetermined systems. J. Fourier Anal. Appl. 19, 256–269 (2013)

    Article  MathSciNet  Google Scholar 

  24. Needell, D., Zhao, R., Zouzias, A.: Randomized block Kaczmarz method with projection for solving least squares. Linear Algebra Appl. 484, 322–343 (2015)

    Article  MathSciNet  Google Scholar 

  25. Strohmer, T., Vershynin, R.: A randomized Kaczmarz algorithm with exponential convergence. J. Fourier Anal. Appl. 15, 262–278 (2009)

    Article  MathSciNet  Google Scholar 

  26. Zhang, J.-J.: A new greedy Kaczmarz algorithm for the solution of very large linear systems. Appl. Math. Lett. 91, 207–212 (2019)

    Article  MathSciNet  Google Scholar 

  27. Zouzias, A., Freris, N.M.: Randomized extended Kaczmarz for solving least squares. SIAM J. Matrix Anal. Appl. 34, 773–793 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author is thankful to the referees for their constructive comments and valuable suggestions, which greatly improved the original manuscript of this paper.

Funding

This work is supported by The National Natural Science Foundation (No. 12001043 and No. 12071472), P.R. China; in part by Beijing Institute of Technology Research Fund Program for Young Scholars; and in part by Science and Technology Commission of Shanghai Municipality (No. 18dz2271000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Ting Wu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Lemma 4.1

From the definition of the GTRK method we can obtain

$$ \begin{array}{@{}rcl@{}} x_{k+1} &=&x_{k}+ \frac{\left( b^{(i_{k_2})}-A^{(i_{k_2})} x_{k}\right)} {\|A^{(i_{k_2})}\|_{2}^{2}} (A^{(i_{k_2})})^{*} \\&&+\left( \frac{b^{(i_{k_1})}}{\|A^{(i_{k_1})}\|_{2}}-\bar{\mu}_{k}\frac{b^{(i_{k_2})}}{\|A^{(i_{k_2})}\|_{2}} -u_{k}^{*} x_{k}\right) \frac{u_{k}}{\|u_{k}\|_{2}^{2}}, \end{array} $$

where uk is defined as in (3.3) with \(\|u_{k}\|_{2}^{2}=1-|\mu _{k}|^{2}\). Since the linear system Ax = b is assumed to be consistent, it holds that b = Ax, then we have

$$ \begin{array}{@{}rcl@{}} x_{k} - x_{\star}+ \frac{\left( b^{(i_{k_2})}-A^{(i_{k_2})} x_{k}\right)} {\|A^{(i_{k_2})}\|_{2}^{2}} (A^{(i_{k_2})})^{*} &=&x_{k} - x_{\star}+ \frac{\left( A^{(i_{k_2})} x_{\star} - A^{(i_{k_2})} x_{k}\right)} {\|A^{(i_{k_2})}\|_{2}^{2}} (A^{(i_{k_2})})^{*} \\ &=&\left( I_{n}-\frac{(A^{(i_{k_2})})^{*}A^{(i_{k_2})}} {\|A^{(i_{k_2})}\|_{2}^{2}}\right)(x_{k}-x_{\star}) \end{array} $$

and

$$ \begin{array}{@{}rcl@{}} \frac{b^{(i_{k_1})}}{\|A^{(i_{k_1})}\|_{2}} - \bar{\mu}_{k}\frac{b^{(i_{k_2})}}{\|A^{(i_{k_2})}\|_{2}} - u_{k}^{*} x_{k} = \frac{A^{(i_{k_1})} x_{\star}}{\|A^{(i_{k_1})}\|_{2}} - \bar{\mu}_{k}\frac{A^{(i_{k_2})} x_{\star}}{\|A^{(i_{k_2})}\|_{2}} -u_{k}^{*} x_{k} =u_{k}^{*}(x_{\star}-x_{k}). \end{array} $$

Therefore, it holds that

$$ \begin{array}{@{}rcl@{}} x_{k+1}-x_{\star} =\left( I_{n}-\frac{(A^{(i_{k_2})})^{*}A^{(i_{k_2})}}{\|A^{(i_{k_2})}\|_{2}^{2}} -\frac{u_{k}u_{k}^{*}}{\|u_{k}\|_{2}^{2}}\right)(x_{k}-x_{\star}). \end{array} $$
(A.1)

We denote \(\check {y}_{k}\) and \(\check {x}_{k+1}\) as the vectors obtained by utilizing one RK iteration on xk and \(\check {y}_{k}\) with the working rows \(A^{(i_{k_1})}\) and \(A^{(i_{k_2})}\) for the consistent linear system Ax = b, respectively. That is,

$$ \check{y}_{k} = x_{k} +\frac{\left( b^{(i_{k_1})}-A^{(i_{k_1})} x_{k}\right)} {\|A^{(i_{k_1})}\|_{2}^{2}} (A^{(i_{k_1})})^{*} $$

and

$$ \check{x}_{k+1} =\check{y}_{k} + \frac{\left( b^{(i_{k_2})}-A^{(i_{k_2})} \check{y}_{k}\right)} {\|A^{(i_{k_2})}\|_{2}^{2}} (A^{(i_{k_2})})^{*}. $$

Then, it follows from b = Ax that

$$ \begin{array}{@{}rcl@{}} \check{x}_{k+1}-x_{\star} &=&\check{y}_{k}-x_{\star}+ \frac{\left( A^{(i_{k_2})} x_{\star}-A^{(i_{k_2})} \check{y}_{k}\right)} {\|A^{(i_{k_2})}\|_{2}^{2}} (A^{(i_{k_2})})^{*}\\ &=&\left( I_{n}-\frac{(A^{(i_{k_2})})^{*}A^{(i_{k_2})}}{\|A^{(i_{k_2})}\|_{2}^{2}}\right) (\check{y}_{k}-x_{\star}) \\ & =&\left( I_{n}-\frac{(A^{(i_{k_2})})^{*}A^{(i_{k_2})}}{\|A^{(i_{k_2})}\|_{2}^{2}}\right) \left( x_{k}-x_{\star} +\frac{\left( A^{(i_{k_1})} x_{\star}-A^{(i_{k_1})} x_{k}\right)} {\|A^{(i_{k_1})}\|_{2}^{2}} (A^{(i_{k_1})})^{*}\right) \\ & =&\left( I_{n}-\frac{(A^{(i_{k_2})})^{*}A^{(i_{k_2})}}{\|A^{(i_{k_2})}\|_{2}^{2}}\right) \left( I_{n}-\frac{(A^{(i_{k_1})})^{*}A^{(i_{k_1})}}{\|A^{(i_{k_1})}\|_{2}^{2}}\right) (x_{k}-x_{\star}). \end{array} $$
(A.2)

From the definition of uk we have

$$ \begin{array}{@{}rcl@{}} \check{x}_{k+1} - x_{\star} \!& =&\!\left( \!I_{n} - \frac{(A^{(i_{k_2})})^{*}A^{(i_{k_2})}}{\|A^{(i_{k_2})}\|_{2}^{2}} - \left( I_{n} - \frac{(A^{(i_{k_2})})^{*}A^{(i_{k_2})}}{\|A^{(i_{k_2})}\|_{2}^{2}}\right) \frac{(A^{(i_{k_1})})^{*}A^{(i_{k_1})}}{\|A^{(i_{k_1})}\|_{2}^{2}}\!\right) (x_{k} - x_{\star}) \\ \!& =&\!\left( I_{n}-\frac{(A^{(i_{k_2})})^{*}A^{(i_{k_2})}}{\|A^{(i_{k_2})}\|_{2}^{2}}- \frac{u_{k}A^{(i_{k_1})}}{\|A^{(i_{k_1})}\|_{2}}\right) (x_{k}-x_{\star}) \\ \!& =&\!\left( I_{n}-\frac{(A^{(i_{k_2})})^{*}A^{(i_{k_2})}}{\|A^{(i_{k_2})}\|_{2}^{2}}- \frac{u_{k} u_{k}^{*}}{\|u_{k}\|_{2}^{2}}\right)(x_{k}-x_{\star}) \\&&\!+\left( \frac{u_{k} u_{k}^{*}}{\|u_{k}\|_{2}^{2}}- \frac{u_{k}A^{(i_{k_1})}}{\|A^{(i_{k_1})}\|_{2}}\right)(x_{k}-x_{\star}). \end{array} $$

From the orthogonality of the vectors \(A^{(i_{k_2})}\) and uk that

$$ \begin{array}{@{}rcl@{}} A^{(i_{k_2})} u_{k} =A^{(i_{k_2})}\left( \frac{(A^{(i_{k_1})})^{*}}{\|A^{(i_{k_1})}\|_{2}} -\mu_{k}\frac{(A^{(i_{k_2})})^{*}}{\|A^{(i_{k_2})}\|_{2}}\right) =0, \end{array} $$

we have

$$ \begin{array}{@{}rcl@{}} &&\!\!\|\check{x}_{k+1}-x_{\star}\|_{2}^{2} \\ \!\! & =& \!\!\left\|\!\left( \!I_{n} - \frac{(A^{(i_{k_2})})^{*}A^{(i_{k_2})}}{\|A^{(i_{k_2})}\|_{2}^{2}} - \frac{u_{k} u_{k}^{*}}{\|u_{k}\|_{2}^{2}}\right)\!(x_{k}\! -\! x_{\star})\right\|_{2}^{2} \! +\! \left\|\!\left( \frac{u_{k} u_{k}^{*}}{\|u_{k}\|_{2}^{2}}\! -\! \frac{u_{k}A^{(i_{k_1})}}{\|A^{(i_{k_1})}\|_{2}}\right)\! (x_{k}\! -\! x_{\star})\right\|_{2}^{2}. \end{array} $$

Then, it follows from (A.1) that

$$ \begin{array}{@{}rcl@{}} \|x_{k+1}-x_{\star}\|_{2}^{2} =\|\check{x}_{k+1}-x_{\star}\|_{2}^{2} -\left|\frac{A^{(i_{k_1})} (x_{k}-x_{\star})}{\|A^{(i_{k_1})}\|_{2}} -\frac{u_{k}^{*}(x_{k}-x_{\star})}{\|u_{k}\|_{2}^{2}} \right|^{2}\|u_{k}\|_{2}^{2}. \end{array} $$

By taking the conditional expectation on both sides of this equality, we can obtain

$$ \begin{array}{@{}rcl@{}} {\mathbb{E}}_{k}\|x_{k+1}-x_{\star}\|_{2}^{2} &=&{\mathbb{E}}_{k}\|\check{x}_{k+1}-x_{\star}\|_{2}^{2} \\&&-{\mathbb{E}}_{k}\left|\frac{A^{(i_{k_1})} (x_{k}-x_{\star})}{\|A^{(i_{k_1})}\|_{2}} -\frac{u_{k}^{*}(x_{k}-x_{\star})}{\|u_{k}\|_{2}^{2}}\right|^{2}\|u_{k}\|_{2}^{2}. \end{array} $$
(A.3)

Next, we give the estimates for the first and second parts of the right-hand side of the equality (A.3) respectively. Denote the two orthogonal projection matrices as

$$ \begin{array}{@{}rcl@{}} Q_{i_{k_{1}}}=I_{n}-\frac{(A^{(i_{k_1})})^{*}A^{(i_{k_1})}}{\|A^{(i_{k_1})}\|_{2}^{2}} \quad\text{and}\quad Q_{i_{k_{2}}}=I_{n}-\frac{(A^{(i_{k_2})})^{*}A^{(i_{k_2})}}{\|A^{(i_{k_2})}\|_{2}^{2}}, \end{array} $$

then from equality (A.2) we have

$$ \begin{array}{@{}rcl@{}} &&{\mathbb{E}}_{k}\|\check{x}_{k+1}-x_{\star}\|_{2}^{2} \\& =&\sum\limits_{i_{k_{1}}=1}^{m}\frac{\|A^{(i_{k_1})}\|_{2}^{2}}{\|A\|_{F}^{2}} \underset{i_{k_{2}}\neq i_{k_{1}}}{\sum\limits_{i_{k_{2}}=1}^{m}} \frac{\|A^{(i_{k_2})}\|_{2}^{2}}{\|A\|_{F}^{2}-\|A^{(i_{k_1})}\|_{2}^{2}} (x_{k}-x_{\star})^{*} Q_{i_{k_{1}}}Q_{i_{k_{2}}}Q_{i_{k_{1}}} (x_{k}-x_{\star}) \\ & =& \sum\limits_{i_{k_{1}}=1}^{m}\frac{\|A^{(i_{k_1})}\|_{2}^{2}}{\|A\|_{F}^{2}} (x_{k}-x_{\star})^{*}Q_{i_{k_{1}}} \left( I_{n}-\frac{A^{*}A-(A^{(i_{k_1})})^{*}A^{(i_{k_1})}}{\|A\|_{F}^{2}-\|A^{(i_{k_1})}\|_{2}^{2}}\right)Q_{i_{k_{1}}} (x_{k}-x_{\star}) \\ & =& \sum\limits_{i_{k_{1}}=1}^{m}\frac{\|A^{(i_{k_1})}\|_{2}^{2}}{\|A\|_{F}^{2}} (x_{k}-x_{\star})^{*}Q_{i_{k_{1}}} \left( I_{n}-\frac{A^{*}A}{\|A\|_{F}^{2}-\|A^{(i_{k_1})}\|_{2}^{2}}\right) Q_{i_{k_{1}}}(x_{k}-x_{\star}). \end{array} $$

Since \(x_{k}-x_{\star }\in {\mathcal R}(A^{*})\) and \(Q_{i_{k_{1}}}(x_{k}-x_{\star })\in {\mathcal R}(A^{*})\), it holds that

$$ \begin{array}{@{}rcl@{}} {\mathbb{E}}_{k}\|\check{x}_{k+1}-x_{\star}\|_{2}^{2} & \leq& \left( 1-\frac{\lambda_{\min}(A^{*}A)} {\tau_{\max}}\right) \sum\limits_{i_{k_{1}}=1}^{m}\frac{\|A^{(i_{k_1})}\|_{2}^{2}}{\|A\|_{F}^{2}} (x_{k}-x_{\star})^{*}Q_{i_{k_{1}}}(x_{k}-x_{\star}) \\ & =& \left( 1-\frac{\lambda_{\min}(A^{*}A)} {\tau_{\max}}\right) (x_{k}-x_{\star})^{*} \left( I_{n}-\frac{A^{*} A}{\|A\|_{F}^{2}}\right) (x_{k}-x_{\star}) \\ & \leq& \left( 1-\frac{\lambda_{\min}(A^{*}A)} {\tau_{\max}}\right) \left( 1-\frac{\lambda_{\min}(A^{*}A)} {\|A\|_{F}^{2}}\right)\|x_{k}-x_{\star}\|_{2}^{2}. \end{array} $$
(A.4)

From the definition of uk and \(\|u_{k}\|_{2}^{2}=1-|\mu _{k}|^{2}\), we have

$$ \begin{array}{@{}rcl@{}} && {\mathbb{E}}_{k}\left|\frac{A^{(i_{k_1})} (x_{k}-x_{\star})}{\|A^{(i_{k_1})}\|_{2}} -\frac{u_{k}^{*}(x_{k}-x_{\star})}{\|u_{k}\|_{2}^{2}}\right|^{2}\|u_{k}\|_{2}^{2}\\ & =& {\mathbb{E}}_{k}\left|\|u_{k}\|_{2}\frac{A^{(i_{k_1})}}{\|A^{(i_{k_1})}\|_{2}}(x_{k}-x_{\star}) -\frac{1}{\|u_{k}\|_{2}}\left( \frac{A^{(i_{k_1})}}{\|A^{(i_{k_1})}\|_{2}} -\bar{\mu}_{k}\frac{A^{(i_{k_2})}}{\|A^{(i_{k_2})}\|_{2}}\right)(x_{k}-x_{\star}) \right|^{2} \\ & =& \sum\limits_{i_{k_{1}}=1}^{m}\frac{\|A^{(i_{k_1})}\|_{2}^{2}}{\|A\|_{F}^{2}} \underset{i_{k_{2}}\neq i_{k_{1}}}{\sum\limits_{i_{k_{2}}=1}^{m}} \frac{\|A^{(i_{k_2})}\|_{2}^{2}}{\|A\|_{F}^{2}-\|A^{(i_{k_1})}\|_{2}^{2}} \left|\frac{|\mu_{k}|^{2}}{\|u_{k}\|_{2}}\frac{A^{(i_{k_1})}}{\|A^{(i_{k_1})}\|_{2}}(x_{k}-x_{\star}) \right.\\&&\left.-\frac{\bar{\mu}_{k}}{\|u_{k}\|_{2}}\frac{A^{(i_{k_2})}}{\|A^{(i_{k_2})}\|_{2}}(x_{k}-x_{\star}) \right|^{2} \\ & \geq& \sum\limits_{i_{k_{1}}=1}^{m} \underset{i_{k_{2}}\neq i_{k_{1}}}{\sum\limits_{i_{k_{2}}=1}^{m}} \frac{\|A^{(i_{k_1})}\|_{2}^{2}\|A^{(i_{k_2})}\|_{2}^{2}} {\|A\|_{F}^{2} \tau_{\max}} \left|\frac{|\mu_{k}|^{2}}{\|u_{k}\|_{2}}\frac{A^{(i_{k_1})}}{\|A^{(i_{k_1})}\|_{2}}(x_{k}-x_{\star}) \right.\\&&\left.-\frac{\bar{\mu}_{k}}{\|u_{k}\|_{2}}\frac{A^{(i_{k_2})}}{\|A^{(i_{k_2})}\|_{2}}(x_{k}-x_{\star}) \right|^{2}. \end{array} $$

Then, with the notations

$$ \begin{array}{@{}rcl@{}} \theta_{p,q} =\frac{\frac{|A^{(q)}(A^{(p)})^{*}|^{2}}{\|A^{(q)}\|_{2}^{2}\|A^{(p)}\|_{2}^{2}}} {\sqrt{1-\frac{|A^{(q)}(A^{(p)})^{*}|^{2}}{\|A^{(q)}\|_{2}^{2}\|A^{(p)}\|_{2}^{2}}}} \quad\text{and}\quad \eta_{p,q} =\frac{\frac{A^{(p)}(A^{(q)})^{*}}{\|A^{(q)}\|_{2}\|A^{(p)}\|_{2}}} {\sqrt{1-\frac{|A^{(q)}(A^{(p)})^{*}|^{2}}{\|A^{(q)}\|_{2}^{2}\|A^{(p)}\|_{2}^{2}}}} \end{array} $$

for p, q ∈{1, 2,…, m} and pq, we can obtain

$$ \begin{array}{@{}rcl@{}} && {\mathbb{E}}_{k}\left|\frac{A^{(i_{k_1})} (x_{k}-x_{\star})}{\|A^{(i_{k_1})}\|_{2}} -\frac{u_{k}^{*}(x_{k}-x_{\star})}{\|u_{k}\|_{2}^{2}}\right|^{2}\|u_{k}\|_{2}^{2} \\ & \geq& \frac{1}{\|A\|_{F}^{2} \tau_{\max}} \sum\limits_{p<q}\|A^{(p)}\|_{2}^{2}\|A^{(q)}\|_{2}^{2} \left( \left|\theta_{p,q}\frac{A^{(p)}}{\|A^{(p)}\|_{2}}(x_{k}-x_{\star}) \right.\right.\\&&\left.-\eta_{p,q}\frac{A^{(q)}}{\|A^{(q)}\|_{2}}(x_{k}-x_{\star})\right|^{2} \\ &&+\left.\left|\theta_{p,q}\frac{A^{(q)}}{\|A^{(q)}\|_{2}}(x_{k}-x_{\star}) -\bar{\eta}_{p,q}\frac{A^{(p)}}{\|A^{(p)}\|_{2}}(x_{k}-x_{\star})\right|^{2}\right). \end{array} $$

Since for any \(\theta , \eta , \phi , \psi \in {\mathbb {C}}\), it holds that

$$ \begin{array}{@{}rcl@{}} |\theta \phi-\eta \psi|^{2}+|\theta \psi-\bar{\eta} \phi|^{2} \geq (|\eta|-|\theta|)^{2}(|\phi|^{2}+|\psi|^{2}), \end{array} $$

we have

$$ \begin{array}{@{}rcl@{}} && {\mathbb{E}}_{k}\left|\frac{A^{(i_{k_1})} (x_{k}-x_{\star})}{\|A^{(i_{k_1})}\|_{2}} -\frac{u_{k}^{*}(x_{k}-x_{\star})}{\|u_{k}\|_{2}^{2}}\right|^{2}\|u_{k}\|_{2}^{2} \\ & \geq& \frac{1}{\|A\|_{F}^{2} \tau_{\max}} \sum\limits_{p<q}\|A^{(p)}\|_{2}^{2}\|A^{(q)}\|_{2}^{2} (|\eta_{p,q}|-|\theta_{p,q}|)^{2}\\ &&\cdot\left( \left|\frac{A^{(p)}}{\|A^{(p)}\|_{2}}(x_{k}-x_{\star})\right|^{2} +\left|\frac{A^{(q)}}{\|A^{(q)}\|_{2}}(x_{k}-x_{\star})\right|^{2}\right). \end{array} $$

Then from

$$ \begin{array}{@{}rcl@{}} (|\eta_{p,q}|-|\theta_{p,q}|)^{2} &=&\left( \frac{\frac{|A^{(p)}(A^{(q)})^{*}|}{\|A^{(q)}\|_{2}\|A^{(p)}\|_{2}} -\frac{|A^{(q)}(A^{(p)})^{*}|^{2}}{\|A^{(q)}\|_{2}^{2}\|A^{(p)}\|_{2}^{2}}} {\sqrt{1-\frac{|A^{(q)}(A^{(p)})^{*}|^{2}}{\|A^{(q)}\|_{2}^{2}\|A^{(p)}\|_{2}^{2}}}}\right)^{2} \\&=&\frac{\frac{|A^{(q)}(A^{(p)})^{*}|^{2}}{\|A^{(q)}\|_{2}^{2}\|A^{(p)}\|_{2}^{2}} \left( 1-\frac{|A^{(q)}(A^{(p)})^{*}|}{\|A^{(q)}\|_{2}\|A^{(p)}\|_{2}}\right)} {1+\frac{|A^{(q)}(A^{(p)})^{*}|}{\|A^{(q)}\|_{2}\|A^{(p)}\|_{2}}} \geq \gamma, \end{array} $$

we know that

$$ \begin{array}{@{}rcl@{}} && {\mathbb{E}}_{k}\left|\frac{A^{(i_{k_1})} (x_{k}-x_{\star})}{\|A^{(i_{k_1})}\|_{2}} -\frac{u_{k}^{*}(x_{k}-x_{\star})}{\|u_{k}\|_{2}^{2}}\right|^{2}\|u_{k}\|_{2}^{2} \\ & \geq& \frac{\gamma}{\|A\|_{F}^{2} \tau_{\max}} \sum\limits_{p<q}\left( \|A^{(q)}\|_{2}^{2}\left|A^{(p)}(x_{k}-x_{\star})\right|^{2} +\|A^{(p)}\|_{2}^{2}\left|A^{(q)}(x_{k}-x_{\star})\right|^{2}\right) \\ & =&\frac{\gamma}{\|A\|_{F}^{2} \tau_{\max}} \sum\limits_{p=1}^{m}\underset{q \neq p}{\sum\limits_{q=1}^{m}} \|A^{(q)}\|_{2}^{2}\left|A^{(p)}(x_{k}-x_{\star})\right|^{2} \\ & =&\frac{\gamma}{\|A\|_{F}^{2} \tau_{\max}} \sum\limits_{p=1}^{m}(\|A\|_{F}^{2}-\|A^{(p)}\|_{2}^{2}) \left|A^{(p)}(x_{k}-x_{\star})\right|^{2} \\ & \geq& \frac{\gamma \tau_{\min}} {\|A\|_{F}^{2} \tau_{\max}} \sum\limits_{p=1}^{m}\left|A^{(p)}(x_{k}-x_{\star})\right|^{2} =\frac{\gamma \tau_{\min}} {\|A\|_{F}^{2} \tau_{\max}} \|A(x_{k}-x_{\star})\|_{2}^{2}. \end{array} $$

It follows from \(x_{k}-x_{\star }\in {\mathcal R}(A^{*})\) that

$$ \begin{array}{@{}rcl@{}} \!\!\!\!\!\!\!\!\!\!\!{\mathbb{E}}_{k}\left|\frac{A^{(i_{k_1})} (x_{k} - x_{\star})}{\|A^{(i_{k_1})}\|_{2}} - \frac{u_{k}^{*}(x_{k}-x_{\star})}{\|u_{k}\|_{2}^{2}}\right|^{2}\|u_{k}\|_{2}^{2} \!\geq\! \frac{\lambda_{\min}(A^{*}A)}{\|A\|_{F}^{2}} \frac{\tau_{\min}}{\tau_{\max}} \gamma\|x_{k} - x_{\star}\|_{2}^{2} . \end{array} $$
(A.5)

Substituting (A.4) and (A.5) into (A.3), we have

$$ \begin{array}{@{}rcl@{}} {\mathbb{E}}_{k}\|x_{k+1} - x_{\star}\|_{2}^{2} &\leq& \left[ \left( 1-\frac{\lambda_{\min}(A^{*}A)} {\tau_{\max}}\right) \left( 1-\frac{\lambda_{\min}(A^{*}A)}{\|A\|_{F}^{2}}\right) -\frac{\lambda_{\min}(A^{*}A)}{\|A\|_{F}^{2}} \frac{\tau_{\min}}{\tau_{\max}} \gamma \right]\\&& \cdot \|x_{k}-x_{\star}\|_{2}^{2}. \end{array} $$

Finally, taking full expectation on both sides of this inequality, we will obtain the result in Lemma 4.1 by induction on the iteration index k. □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, WT. On two-subspace randomized extended Kaczmarz method for solving large linear least-squares problems. Numer Algor 89, 1–31 (2022). https://doi.org/10.1007/s11075-021-01104-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-021-01104-x

Keywords

Mathematics Subject Classification (2010)

Navigation