Skip to main content
Log in

A dual symmetric Gauss-Seidel alternating direction method of multipliers for hyperspectral sparse unmixing

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Since sparse unmixing has emerged as a promising approach to hyperspectral unmixing, some spatial-contextual information in the hyperspectral images has been exploited to improve the performance of the unmixing recently. The total variation (TV) has been widely used to promote the spatial homogeneity as well as the smoothness between adjacent pixels. However, the computation task for hyperspectral sparse unmixing with a TV regularization term is heavy. Besides, the convergence of the primal alternating direction method of multipliers (ADMM) for the hyperspectral sparse unmixing with a TV regularization term has not been explained in detail. In this paper, we design an efficient and convergent dual symmetric Gauss-Seidel ADMM (sGS-ADMM) for hyperspectral sparse unmixing with a TV regularization term. We also present the global convergence and local linear convergence rate analysis for this algorithm. As demonstrated in numerical experiments, our algorithm can obviously improve the efficiency of the unmixing compared with the state-of-the-art algorithm. More importantly, we can obtain images with higher quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. We have to emphasize that in [15] the authors deal with problem (1) in three blocks instead of two blocks when they applied the primal ADMM. In fact, the problem can be regarded as two blocks. So Algorithm 1 in this paper is a little different from Algorithm 1 in [15]. It not only is faster but also has mathematically guaranteed convergence theory. Actually, the code for the algorithm in [15] is in accordance with our two-block primal ADMM.

  2. In Algorithm 2, V3 is updated twice because we use the sGS decomposition to solve the subproblem. For more details, one may refer to [28].

  3. downloaded from http://www.lx.it.pt/~bioucas/publications.html.

  4. Since the SRE value will get worse after the KKT residual is smaller than some value, and Algorithm 2 is obviously faster than Algorithm 1 according to the experiments behind, the settings of the maximal iterations are not the same.

  5. Available online: http://speclab.cr.usgs.gov/spectral.lib06.

  6. Available online: http://aviris.jpl.nasa.gov/html/aviris.freedata.html

References

  1. Bioucas-Dias, J.M., Plaza, A., Dobigeon, N., Parente, M., Du, Q., Gader, P., Chanussot, J.: Hyperspectral unmixing overview: geometrical, statistical, and sparse regression-based approaches. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 5(2), 354–379 (2012)

    Article  Google Scholar 

  2. Nascimento, J.P., Bioucas-Dias, J.M.: Vertex component analysis: a fast algorithm to unmix hyperspectral data. IEEE Trans. Geosci. Remote Sens. 43(4), 898–910 (2005)

    Article  Google Scholar 

  3. Boardman, J.W., Kruse, F.A., Green, R.O.: Mapping target signatures via partial unmixing of AVIRIS data. In: Proc. J.L Airborne Earth Sci. Workshop, pp. 23–26 (1995)

  4. Chang, C.-I., Wu, C.-C., Liu, W., Ouyang, Y.-C.: A new growing method for simplex-based endmember extraction algorithm. IEEE Trans. Geosci. Remote Sens. 44(10), 2804–2819 (2006)

    Article  Google Scholar 

  5. Chan, T.-H., Chi, C.-Y., Huang, Y.-M., Ma, W.-K.: Convex analysis based minimum-volume enclosing simplex algorithm for hyperspectral unmixing. IEEE Trans. Signal Process. 57(11), 4418–4432 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Berman, M., Kiiveri, H., Lagerstrom, R., Ernst, A., Dunne, R., Huntington, J.F.: ICE: A statistical approach to identifying endmembers in hyperspectral images. IEEE Trans. Geosci. Remote Sens. 42(10), 2085–2095 (2004)

    Article  Google Scholar 

  7. Miao, L., Qi, H.: Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization. IEEE Trans. Geosci. Remote Sens. 45(3), 765–777 (2007)

    Article  Google Scholar 

  8. Dobigeon, N., Moussaoui, S., Coulon, M., Tourneret, J.-Y., Hero, A.O.: Joint Bayesian endmember extraction and linear unmixing for hyperspectral imagery. IEEE Trans. Signal Process. 57(11), 4355–4368 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bruckstein, A.M., Donoho, D.L., Elad, M.: From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Rev. 51 (1), 34–81 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Iordache, M.-D., Bioucas-Dias, J.M., Plaza, A., Somers, B.: MUSIC-CSR: hyperspectral unmixing via multiple signal classification and collaborative sparse regression. IEEE Trans. Geosci. Remote Sens. 52(7), 4364–4382 (2014)

    Article  Google Scholar 

  11. Iordache, M.-D., Bioucas-Dias, J.M., Plaza, A.: Sparse unmixing of hyperspectral data. IEEE Trans. Geosci. Remote Sens. 49(6), 2014–2039 (2011)

    Article  Google Scholar 

  12. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D Nonlinear Phenom. 60(1-4), 259–268 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  13. Zhao, X.-L., Wang, W., Zeng, T.-Y., Huang, T.-Z., Ng, M.K.: Total variation structured total least squares method for image restoration. SIAM J. Sci. Comput. 35(6), 1304–1320 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Zakharova, A.: Total variation reconstruction from quadratic measurements. Numer. Algorith. 75(1), 81–92 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Iordache, M.-D., Bioucas-Dias, J.M., Plaza, A.: Total variation spatial regularization for sparse hyperspectral unmixing. IEEE Trans. Geosci. Remote Sens. 50(11), 4484–4502 (2012)

    Article  Google Scholar 

  16. Zhang, S., Li, J., Liu, K., Plaza, A.: Hyperspectral unmixing based on local collaborative sparse regression. IEEE Geosci. Remote Sens. Lett. 13(5), 631–635 (2016)

    Article  Google Scholar 

  17. Zhang, L., Wei, W., Zhang, Y., Yan, H., Li, F., Tian, C.: Locally similar sparsity-based hyperspectral compressive sensing using unmixing. IEEE Trans. Comput. Imag. 2(2), 86–100 (2016)

    Article  MathSciNet  Google Scholar 

  18. Iordache, M.-D., Bioucas-Dias, J.M., Plaza, A.: Collaborative sparse regression for hyperspectral unmixing. IEEE Trans. Geosci. Remote Sens. 52(1), 341–354 (2014)

    Article  Google Scholar 

  19. Chen, Y.-J., Ge, W.-D., Sun, L.: A novel linear hyperspectral unmixing method based on collaborative sparsity and total variation. Acta Auto. Sinica. 44(1), 116–128 (2018)

    Google Scholar 

  20. Glowinski, R., Marroco, A.: Sur l’approximation, par éléments finis d’ordre un, et la résolution, par pénalisation-dualité d’une classe de problémes de Dirichlet non linéaires, Revue Francaise d’Automatique. Informatique et Recherche Opérationelle 2(R-2), 41–76 (1975)

    MATH  Google Scholar 

  21. Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational problems via finite element approximation. Comput. Math. Appl. 2(1), 17–40 (1976)

    Article  MATH  Google Scholar 

  22. Eckstein, J., Yao, W.: Understanding the convergence of the alternating direction method of multipliers: Theoretical and computational perspectives. Pac. J. Optim. 11(4), 619–644 (2015)

    MathSciNet  MATH  Google Scholar 

  23. Glowinski, R.: On alternating direction methods of multipliers: a historical perspective. In: Fitzgibbon, W., Kuznetsov, Y.A., Neittaanmaki, P., Pironneau, O. (eds.) Modeling Simulation and Optimization for Science and Technology 59–82 (2014)

  24. Fazel, M., Pong, T.K., Sun, D., Tseng, P.: Hankel matrix rank minimization with applications to system identification and realization. SIAM J. Matrix Anal. Appl. 34(3), 946–977 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Han, D., Sun, D., Zhang, L.: Linear rate convergence of the alternating direction method of multipliers for convex composite programming. arXiv:1508.02134 (2015)

  26. Chen, C., He, B., Ye, Y., Yuan, X.: The direct extension of ADMM for multi-block convex minimization problems is not necessarily convergent. Math. Program. 155(1-2), 57–79 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Li, X., Sun, D., Toh, K.-C.: A Schur complement based semi-proximal ADMM for convex quadratic conic programming and extensions. Math. Program. 155(1-2), 333–373 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Li, X., Sun, D., Toh, K.-C.: A block symmetric Gauss-Seidel decomposition theorem for convex composite quadratic programming and its applications. Math. Program. 175(1-2), 395–418 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  29. Chen, L., Sun, D., Toh, K.-C.: An efficient inexact symmetric Gauss-Seidel based majorized ADMM for high-dimensional convex composite conic programming. Math. Program. 161(1-2), 237–270 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  30. Chen, L., Sun, D., Toh, K.-C., Zhang, N.: A unified algorithmic framework of symmetric Gauss-Seidel decomposition based proximal ADMMs for convex composite programming, Math. Program. arXiv:1812.06579 (2018)

  31. Beck, A., Teboulle, M.: Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. IEEE Trans. Image Process. 18(11), 2419–2434 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zuo, W., Lin, Z.: A generalized accelerated proximal gradient approach for total-variation-based image restoration. IEEE Trans. Image Process. 20 (10), 2748–2759 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Rockafellar, R.T.: Convex Analysis. University of Princeton, USA (1970)

  34. Horn, R.A., Johnson, C.R.: Matrix Analysis, university of cambridge UK (1985)

  35. Sun, J.: On monotropic piecewise quadratic programming, Ph.D. dissertation, University of Washington USA (1986)

  36. Robinson, S.M.: Some contimuity properties of polyhedral multifuntions. Math. Program. Study 14, 206–214 (1981)

    Article  Google Scholar 

  37. Dontchev, A., Rockafellar, R.T.: Implicit Function and Solution Mappings. Springer, USA (2009)

    Book  MATH  Google Scholar 

  38. Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer, USA (1998)

    Book  MATH  Google Scholar 

  39. Wang, R., Li, H.-C., Liao, W., Huang, X., Philips, W.: Centralized collaborative sparse unmixing for hyperspectral images. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 10(5), 1949–1962 (2017)

    Article  Google Scholar 

  40. Condat, L.: A direct algorithm for 1-D total variation denoising. IEEE Signal Process. Lett. 20(11), 1054–1057 (2013)

    Article  Google Scholar 

  41. Kozintsev, B.: Computations with Gaussian random fields, Ph.D. dissertation, University of Maryland USA (1999)

  42. Yu, Y.: On decomposing the proximal map. Adv. Neural Inform. Process. Syst 1, 91–99 (2013)

    Google Scholar 

  43. Jia, S., Qian, Y.: Spectral and spatial complexity-based hyperspectral unmixing. IEEE Trans. Geosci. Remote Sens. 45(12), 3867–3879 (2007)

    Article  Google Scholar 

  44. Jia, S., Qian, Y.: Constrained nonnegative matrix factorization for hyperspectral unmixing. IEEE Trans. Geosci. Remote Sens. 47(1), 161–173 (2009)

    Article  Google Scholar 

  45. Zhu, F., Wang, Y., Xiang, S., Fan, B., Pan, C.: Structured sparse method for hyperspectral unmixing, ISPRS. J. Photogramm. Remote Sens. 88 (2), 101–118 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Professor Xile Zhao at School of Mathematics, University of Electronic Science and Technology of China for his useful comments and suggestions. We also thank Professor Heng-Chao Li at the School of Information Science and Technology, Southwest Jiaotong University for fruitful discussions. Besides, We are grateful to the two anonymous referees and the Editor-in-Chief Prof. Claude Brezinski for their constructive and helpful suggestions on improving the quality of the paper. The work of Longfei Ren was supported by the China Scholarship Council (CSC).

Funding

The work of Peipei Tang was supported by the Natural Science Foundation of Zhejiang Province of China under Grant LY19A010028 and the Science and Technology Development Project of Hangzhou, China under Grant 20170533B22, 20162013A08.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengjing Wang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, L., Wang, C., Tang, P. et al. A dual symmetric Gauss-Seidel alternating direction method of multipliers for hyperspectral sparse unmixing. Numer Algor 87, 719–754 (2021). https://doi.org/10.1007/s11075-020-00985-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-020-00985-8

Keywords

Navigation