Skip to main content
Log in

Kernel-based interpolation at approximate Fekete points

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

A Correction to this article was published on 05 December 2020

This article has been updated

Abstract

We construct approximate Fekete point sets for kernel-based interpolation by maximising the determinant of a kernel Gram matrix obtained via truncation of an orthonormal expansion of the kernel. Uniform error estimates are proved for kernel interpolants at the resulting points. If the kernel is Gaussian, we show that the approximate Fekete points in one dimension are the solution to a convex optimisation problem and that the interpolants converge with a super-exponential rate. Numerical examples are provided for the Gaussian kernel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Change history

Notes

  1. Wendland [38, p. 192] goes as far as describing these results “almost pointless” for kernels, such as the Gaussian, that are associated with exponential rates of convergence.

  2. Observe that in this section we begin indexing of the expansion from zero to simplify notation.

  3. In one dimension, the convergence occurs for any points and most commonly used infinitely smooth radial kernels but in higher dimensions the Gaussian kernel is special in that it is the only known kernel for which convergence to a polynomial interpolant, of minimal degree in a certain sense, occurs for every point set.

  4. This is the constant C in Theorem 6.1 of [24]. To derive the claimed bound, observe that this constant is given as C = 𝜖B/4 for \(B \leq \min \limits \{(b-a)/6, 1\}\) in their proof of Theorem 4.5. On p. 120, they show that 𝜖 = 1/2 if the kernel is Gaussian.

References

  1. Arcangéli, R., de Silanes, M. C. L., Torrens, J. J.: An extension of a bound for functions in Sobolev spaces, with applications to (m,s)-spline interpolation and smoothing. Numer. Math. 107(2), 181–211 (2007)

    Article  MathSciNet  Google Scholar 

  2. Beatson, R.: Error bounds for anisotropic RBF interpolation. J. Approx. Theory 162(3), 512–527 (2010)

    Article  MathSciNet  Google Scholar 

  3. Belhadji, A., Bardenet, R., Chainais, P.: Kernel quadrature with DPPs. Adv. Neural Inf. Process. Syst. 32, 12907–12917 (2019)

    Google Scholar 

  4. Berlinet, A., Thomas-agnan, C.: Reproducing Kernel Hilbert Spaces in Probability and Statistics. Springer, Berlin (2004)

  5. Bos, L., De Marchi, S.: On optimal points for interpolation by univariate exponential functions. Dol. Res. Notes Approx. 4, 8–12 (2011)

    Google Scholar 

  6. Bos, L., De Marchi, S., Sommariva, A., Vianello, M.: Computing multivariate Fekete and Leja points by numerical linear algebra. SIAM J. Numer. Anal. 48(5), 1984–1999 (2010)

    Article  MathSciNet  Google Scholar 

  7. Bos, L. P., Maier, U.: On the asymptotics of Fekete-type points for univariate radial basis interpolation. J. Approx. Theory 119(2), 252–270 (2002)

    Article  MathSciNet  Google Scholar 

  8. Briani, M., Sommariva, A., Vianello, M.: Computing Fekete and Lebesgue points: simplex, square, disk. J. Comput. Appl. Math. 236(9), 2477–2486 (2012)

    Article  MathSciNet  Google Scholar 

  9. De Marchi, S., Schaback, R.: Nonstandard kernels and their applications. Dol. Res. Notes Approx. 2, 16–43 (2009)

    Google Scholar 

  10. De Marchi, S., Schaback, R.: Stability of kernel-based interpolation. Adv. Comput. Math. 32, 155–161 (2010)

    Article  MathSciNet  Google Scholar 

  11. De Marchi, S., Schaback, R., Wendland, H.: Near-optimal data-independent point locations for radial basis function interpolation. Adv. Comput. Math. 23(3), 317–330 (2005)

    Article  MathSciNet  Google Scholar 

  12. Fasshauer, G., Hickernell, F., Woźniakowski, H.: On dimension-independent rates of convergence for function approximation with Gaussian kernels. SIAM J. Numer. Anal. 50(1), 247–271 (2012)

    Article  MathSciNet  Google Scholar 

  13. Fasshauer, G., McCourt, M.: Kernel-based Approximation Methods Using MATLAB. Number 19 in Interdisciplinary Mathematical Sciences. World Scientific Publishing (2015)

  14. Fasshauer, G. E.: Meshfree Approximation Methods with MATLAB. Number 6 in Interdisciplinary Mathematical Sciences. World Scientific Publishing (2007)

  15. Fasshauer, G. E., McCourt, M. J.: Stable evaluation of Gaussian radial basis function interpolants. SIAM J. Sci. Comput. 34(2), A737–A762 (2012)

    Article  MathSciNet  Google Scholar 

  16. Gautier, G., Bardenet, R., Valko, M.: On two ways to use determinantal point processes for Monte Carlo integration. Adv. Neural Inf. Process. Syst. 32, 7768–7777 (2019)

    Google Scholar 

  17. Johansson, F., et al.: mpmath: a Python library for arbitrary-precision floating-point arithmetic (version 1.10). http://mpmath.org/ (2018)

  18. Karvonen, T., Särkkä, S.: Worst-case optimal approximation with increasingly flat Gaussian kernels. Advances in Computational Mathematics. Published online https://doi.org/10.1007/s10444-020-09767-1 (2020)

  19. Lee, Y. J., Yoon, G. J., Yoon, J.: Convergence of increasingly flat radial basis interpolants to polynomial interpolants. SIAM J. Math. Anal. 39 (2), 537–553 (2007)

    Article  MathSciNet  Google Scholar 

  20. Minh, H. Q.: Some properties of Gaussian reproducing kernel Hilbert spaces and their implications for function approximation and learning theory. Constr. Approx. 32(2), 307–338 (2010)

    Article  MathSciNet  Google Scholar 

  21. Müller, S.: Komplexität und Stabilität von kernbasierten Rekonstruktionsmethoden. PhD Thesis, Institut für Numerische und Angewandte Mathematik, Georg-August-Universität Göttingen (2009)

  22. Narcowich, F. J., Ward, J. D., Wendland, H.: Sobolev error estimates and a Bernstein inequality for scattered data interpolation via radial basis functions. Constr. Approx. 24(2), 175–186 (2006)

    Article  MathSciNet  Google Scholar 

  23. Paulsen, V. I., Raghupathi, M.: An Introduction to the Theory of Reproducing Kernel Hilbert Spaces. Number 152 in Cambridge Studies in Advanced Mathematics. Cambridge University Press (2016)

  24. Rieger, C., Zwicknagl, B.: Sampling inequalities for infinitely smooth functions, with applications to interpolation and machine learning. Adv. Comput. Math. 32, 103–129 (2010)

    Article  MathSciNet  Google Scholar 

  25. Rieger, C., Zwicknagl, B.: Improved exponential convergence rates by oversampling near the boundary. Constr. Approx. 39(2), 323–341 (2014)

    Article  MathSciNet  Google Scholar 

  26. Robbins, H.: A remark on Stirling’s formula. Am. Math. Mon. 62(1), 26–29 (1955)

    MathSciNet  MATH  Google Scholar 

  27. Santin, G., Haasdonk, B.: Convergence rate of the data-independent P-greedy algorithm in kernel-based approximation. Dol. Res. Notes Approx. 10, 68–78 (2017)

    MathSciNet  MATH  Google Scholar 

  28. Schaback, R.: Improved error bounds for scattered data interpolation by radial basis functions. Math. Comput. 68(225), 201–216 (1999)

    Article  MathSciNet  Google Scholar 

  29. Schaback, R.: A unified theory of radial basis functions: native Hilbert spaces for radial basis functions II. J. Comput. Appl. Math. 121(1–2), 165–177 (2000)

    Article  MathSciNet  Google Scholar 

  30. Schaback, R.: Multivariate interpolation by polynomials and radial basis functions. Constr. Approx. 21(3), 293–317 (2005)

    Article  MathSciNet  Google Scholar 

  31. Schaback, R.: Superconvergence of kernel-based interpolation. J. Approx. Theory 235, 1–19 (2018)

    Article  MathSciNet  Google Scholar 

  32. Schaback, R., Wendland, H.: Adaptive greedy techniques for approximate solution of large RBF systems. Numer. Algorithm. 24(3), 239–254 (2000)

    Article  MathSciNet  Google Scholar 

  33. Sloan, I. H., Woźniakowski, H.: Multivariate approximation for analytic functions with Gaussian kernels. J. Complex. 45, 1–21 (2018)

    Article  MathSciNet  Google Scholar 

  34. Steinwart, I., Hush, D., Scovel, C.: An explicit description of the reproducing kernel Hilbert spaces of Gaussian RBF kernels. IEEE Trans. Inf. Theory 52(10), 4635–4643 (2006)

    Article  MathSciNet  Google Scholar 

  35. Sun, H.: Mercer theorem for RKHS on noncompact sets. J. Complex. 21(3), 337–349 (2005)

    Article  MathSciNet  Google Scholar 

  36. Tanaka, K.: Generation of point sets by convex optimization for interpolation in reproducing kernel Hilbert spaces. Numer. Algorithm. 84, 1049–1079 (2020)

    Article  MathSciNet  Google Scholar 

  37. Tanaka, K., Sugihara, M.: Design of accurate formulas for approximating functions in weighted Hardy spaces by discrete energy minimization. IMA J. Numer. Anal. 39(4), 1957–1984 (2019)

    Article  MathSciNet  Google Scholar 

  38. Wendland, H.: Scattered Data Approximation. Number 17 in Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press (2005)

  39. Wendland, H., Rieger, C.: Approximate interpolation with applications to selecting smoothing parameters. Numer. Math. 101(4), 729–748 (2005)

    Article  MathSciNet  Google Scholar 

  40. Wirtz, D., Haasdonk, B.: A vectorial kernel orthogonal greedy algorithm. Dol. Res. Notes Approx. 6, 83–100 (2013)

    Google Scholar 

Download references

Funding

T. Karvonen was supported by the Aalto ELEC Doctoral School and the Lloyd’s Register Foundation programme on data-centric engineering at the Alan Turing Institute, UK. This research was partially carried out while he was visiting the University of Tokyo, funded by the Finnish Foundation for Technology Promotion and Oskar Öflunds Stiftelse. S. Särkkä was supported by the Academy of Finland. K. Tanaka was supported by the grant-in-aid of Japan Society of the Promotion of Science with KAKENHI Grant Number 17K14241.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toni Karvonen.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The corrected equations in Sections 2.1, 2.2, 3.2, 3.3 and 4.3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karvonen, T., Särkkä, S. & Tanaka, K. Kernel-based interpolation at approximate Fekete points. Numer Algor 87, 445–468 (2021). https://doi.org/10.1007/s11075-020-00973-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-020-00973-y

Keywords

Navigation