Skip to main content
Log in

Accurate sampling formula for approximating the partial derivatives of bivariate analytic functions

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The bivariate sinc-Gauss sampling formula is introduced in Asharabi and Prestin (IMA J. Numer. Anal. 36:851–871, 2016) to approximate analytic functions of two variables which satisfy certain growth condition. In this paper, we apply this formula to approximate partial derivatives of any order for entire and holomorphic functions on an infinite horizontal strip domain using only finitely many samples of the function itself. The rigorous error analysis is carried out with sharp estimates based on a complex analytic approach. The convergence rate of this technique will be of exponential type, and it has a high accuracy in comparison with the accuracy of the bivariate classical sampling formula. Several computational examples are exhibited, demonstrating the exactness of the obtained results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ahlfors, L. V.: Complex Analysis, 3rd ed. McGraw Hill, New York (1979)

  2. Annaby, M. H.: Multivariate sampling theorems associated with multiparameter differential operators. Proc. Edin. Math. Soc. 48, 257–277 (2005)

    Article  MathSciNet  Google Scholar 

  3. Asharabi, R.M.: Generalized bivariate Hermite-Gauss sampling. Comput. Appl. Math. 38. https://doi.org/10.1007/s40314-019-0802-z (2019)

  4. Asharabi, R. M.: The use of the sinc-Gaussian sampling formula for approximating the derivatives of analytic functions. Numer. Algor. 81, 293–312 (2019)

    Article  MathSciNet  Google Scholar 

  5. Asharabi, R. M.: Generalized sinc-Gaussian sampling involving derivatives. Numer. Algor. 73, 1055–1072 (2016)

    Article  MathSciNet  Google Scholar 

  6. Asharabi, R. M., Al-Hayzea, A. M.: Double sampling derivatives and truncation error estimates. Appl. Math. J. Chinese Univ. 33, 209–224 (2018)

    Article  MathSciNet  Google Scholar 

  7. Asharabi, R. M., Prestin, J.: A modification of Hermite sampling with a Gaussian multiplier. Numer. Funct. Anal. Optim. 36, 419–437 (2015)

    Article  MathSciNet  Google Scholar 

  8. Asharabi, R. M., Prestin, J.: On two-dimensional classical and Hermite sampling. IMA J. Numer. Anal. 36, 851–871 (2016)

    Article  MathSciNet  Google Scholar 

  9. Gosselin, R. P.: On the lp theory of cardinal series. Ann. Math. 78, 567–581 (1963)

    Article  MathSciNet  Google Scholar 

  10. Nikol’skii, S. N.: Approximation of Functions of Several Variables and Imbedding Theorems. Springer, New York (1975)

  11. Parzen, E.: A simple proof and some extensions of sampling theorems. Technical Report 7 Stanford University, California, pp. 1–9 (1956)

  12. Peterson, D. P., Middleton, D.: Sampling and reconstruction of wave number-limited functions in N-dimensional Euclidean space. Inform. Control 5, 279–323 (1962)

    Article  MathSciNet  Google Scholar 

  13. Qian, L.: On the regularized Whittaker-Kotel’nikov-Shannon sampling formula. Proc. Amer. Math. Soc. 131, 1169–1176 (2002)

    Article  Google Scholar 

  14. Qian, L., Creamer, D. B.: A modification of the sampling series with a Gaussian multiplier. Sampl Theory Signal Image Process 5, 1–19 (2006)

    MathSciNet  MATH  Google Scholar 

  15. Qian, L., Creamer, D. B.: Localized sampling in the presence of noise. Appl. Math. Lett. 19, 351–355 (2006)

    Article  MathSciNet  Google Scholar 

  16. Schmeisser, G., Stenger, F.: Sinc approximation with a Gaussian multiplier. Sampl. Theory Signal Image Process. 6, 199–221 (2007)

    MathSciNet  MATH  Google Scholar 

  17. Tanaka, K., Sugihara, M., Murota, K.: Complex analytic approach to the sinc-Gauss sampling formula. J.pan J. Ind. Appl. Math. 25, 209–231 (2008)

    Article  MathSciNet  Google Scholar 

  18. Vladimirov, V. S.: Methods of the Theory of Functions of Many Complex Variables. MIT Press, Cambridge (1966)

    Google Scholar 

Download references

Acknowledgment

We thank the anonymous referees for their valuable comments.

Funding

The first author gratefully acknowledges the support by the Alexander von Humboldt foundation under the grant 3.4-JEM/1142916.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Asharabi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asharabi, R.M., Prestin, J. Accurate sampling formula for approximating the partial derivatives of bivariate analytic functions. Numer Algor 86, 1421–1441 (2021). https://doi.org/10.1007/s11075-020-00939-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-020-00939-0

Keywords

Mathematics subject classification (2010)

Navigation