Skip to main content
Log in

Recovery type a posteriori error estimates for the conduction convection problem

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, we construct a recovery type a posteriori error estimator based on the recovered gradient method to the stationary conduction convection equations. Besides, for these nonlinear partial differential equations, we establish reliability and efficiency of the recovery type estimator. Numerical results on test problems for the new estimator are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bochev, P.B., Dohrmann, C.R., Gunzburger, M.D.: Stabilization of low-order mixed finite elements for the Stokes equations. SIAM J. Numer. Anal. 44(1), 82–101 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Boland, J., Layton, W.: Error analysis for finite element methods for steady natural convection problems. Numer. Funct. Anal. Optim. 11(5-6), 449–483 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brezis, H., Gallouet, T.: Schrödinger evolution equations. Nonlinear Analysis: Theory, Methods Applications 4(4), 677–681 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  4. Carstensen, C.: Some remarks on the history and future of averaging techniques in a posteriori finite element error analysis. ZAMM Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 84(1), 3–21 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Carstensen, C., Bartels, S.: Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part I: Low order conforming, nonconforming, and mixed FEM. Math. Comput. 71(239), 945–969 (2002)

    Article  MATH  Google Scholar 

  6. Carstensen, C., Funken, S.A.: Averaging technique for FE-a posteriori error control in elasticity. Part I: Conforming FEM. Comput. Methods Appl. Mech. Eng. 190(18), 2483–2498 (2001)

    Article  MATH  Google Scholar 

  7. Carstensen, C., Verfürth, R.: Edge residuals dominate a posteriori error estimates for low order finite element methods. SIAM J. Numer. Anal. 36(5), 1571–1587 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Çıbık, A., Kaya, S.: A projection-based stabilized finite element method for steady-state natural convection problem. J. Math. Anal. Appl. 381(2), 469–484 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. De Vahl Davis, G.: Natural convection of air in a square cavity: a bench mark numerical solution. Int. J. Numer. Methods Fluids 3(3), 249–264 (1983)

    Article  MATH  Google Scholar 

  10. He, Y.N., Wang, A.W., Mei, L.Q.: Stabilized finite-element method for the stationary Navier-Stokes equations. J. Eng. Math. 51(4), 367–380 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Huang, P., Zhang, Q.: A posteriori error estimates for the Stokes eigenvalue problem based on a recovery type estimator. Bulletin Mathematique de la Societe des Sciences Mathematiques de Roumani 62(3), 295–304 (2019)

    MathSciNet  MATH  Google Scholar 

  12. Huang, P., Zhao, J., Feng, X.: An Oseen scheme for the conduction-convection equations based on a stabilized nonconforming method. Appl. Math. Model. 38(2), 535–547 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Huang, P., Zhao, J., Feng, X.: Highly efficient and local projection-based stabilized finite element method for natural convection problem. Int. J. Heat Mass Transf. 83, 357–365 (2015)

    Article  Google Scholar 

  14. Manzari, M.T.: An explicit finite element algorithm for convection heat transfer problems. Int. J. Numer. Methods Heat Fluid Flow 9(8), 860–877 (1999)

    Article  MATH  Google Scholar 

  15. Rodríguez, R.: Some remarks on Zienkiewicz Zhu estimator. Numer. Methods Partial Diff. Equ. 10(5), 625–635 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  16. Sankhavara, C.D., Shukla, H.J.: Numerical investigation of natural convection in a partitioned rectangular enclosure. Numer. Heat Transfer, Part A Appl. 50(10), 975–997 (2006)

    Article  Google Scholar 

  17. Si, Z.Y., Shang, Y.Q., Zhang, T.: New one- and two-level Newton iterative mixed finite element methods for stationary conduction-convection problems. Finite Elem. Anal. Des. 47, 175–183 (2011)

    Article  MathSciNet  Google Scholar 

  18. Song, L., Hou, Y., Cai, Z.: Recovery-based error estimator for stabilized finite element methods for the Stokes equation. Comput. Methods Appl. Mech. Eng. 272, 1–16 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Song, L., Su, H., Feng, X.: Recovery-based error estimator for stabilized finite element method for the stationary Navier–Stokes problem. SIAM J. Sci. Comput. 38 (6), A3758–A3772 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Su, H., Gui, D., Huang, P., et al.: Two-level stabilized, nonconforming finite-element algorithms for the stationary conduction-convection equations. Numerical Heat Transfer Part B: Fundamentals 66(3), 211–242 (2014)

    Article  Google Scholar 

  21. Verfürth, R.A.: Posteriori error estimates for nonlinear problems. Finite element discretizations of elliptic equations. Math. Comput. 62(206), 445–475 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  22. Verfürth, R.A.: Posteriori Error Estimation Techniques for Finite Element Methods. Oxford University Press, Oxford (2013)

    Book  MATH  Google Scholar 

  23. Wan, D.C., Patnaik, B.S.V., Wei, G.W.A.: New benchmark quality solution for the buoyancy-driven cavity by discrete singular convolution. Numerical Heat Transfer, Part B Fundamentals 40(3), 199–228 (2001)

    Article  Google Scholar 

  24. Wu, J.L., Huang, P.Z., Feng, X.L.A.: A new variational multiscale FEM for the steady-state natural convection problem with bubble stabilization. Numerical Heat Transfer, Part A Applications 68(7), 777–796 (2015)

    Article  Google Scholar 

  25. Zhang, Y., Hou, Y., Du, C.: A posteriori error estimation for a defect correction method applied to conduction convection problems. Numer. Methods Partial Diff. Equ. 29(2), 496–509 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhang, Y., Hou, Y., Wei, H.: Adaptive mixed least squares Galerkin/Petrov finite element method for stationary conduction convection problems. Appl. Math. Mech. 32(10), 1269–1286 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhang, Y., Hou, Y., Zuo, H.: A posteriori error estimation and adaptive computation of conduction convection problems. Appl. Math. Model. 35(5), 2336–2347 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zheng, H., Hou, Y., Shi, F.: A posteriori error estimates of stabilization of low-order mixed finite elements for incompressible flow. J. Sci. Comput. 32(3), 1346–1360 (2010)

    MathSciNet  MATH  Google Scholar 

  29. Zienkiewicz, O.C., Zhu, J.Z.: The superconvergent patch recovery and a posteriori error estimates. Part 1: the recovery technique. Int. J. Numer. Methods Eng. 33(7), 1331–1364 (1992)

    Article  MATH  Google Scholar 

  30. Zienkiewicz, O.C., Zhu, J.Z.: The superconvergent patch recovery and a posteriori error estimates. Part 2: error estimates and adaptivity. Int. J. Numer. Methods Eng. 33(7), 1365–1382 (1992)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the editor and anonymous reviewers for their helpful comments and suggestions which helped to improve the quality of our present paper.

Funding

This work is financially supported by the Natural Science Foundation of China (grant numbers 11861067 and 11771259).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengzhan Huang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Li, J. & Huang, P. Recovery type a posteriori error estimates for the conduction convection problem. Numer Algor 86, 425–441 (2021). https://doi.org/10.1007/s11075-020-00894-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-020-00894-w

Keywords

Mathematics Subject Classification (2010)

Navigation