Skip to main content
Log in

A space-time finite element method for fractional wave problems

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, we analyze a space-time finite element method for fractional wave problems involving the time fractional derivative of order γ (1 < γ < 2). We first establish the stability of the proposed method and then derive the optimal convergence rate in H1(0,T;L2(Ω))-norm and suboptimal rate in discrete \( L^{\infty }(0,T;{H_{0}^{1}}({\Omega })) \)-norm. Furthermore, we discuss the performance of this method when the true solution has singularity at t = 0 and show that optimal convergence rate with respect to H1(0,T;L2(Ω))-norm can still be achieved by using graded temporal grids. Finally, numerical experiments are performed to verify the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brenner, S., Scott, R.: The mathematical theory of finite element methods, 3rd edn. Springer, New York (2008)

    Book  MATH  Google Scholar 

  2. Ciarlet, P.: The finite element method for elliptic problems. Society for Industrial and Applied Mathematics (2002)

  3. Cao, J., Xu, C.: A high order schema for the numerical solution of the fractional ordinary differential equations. J Comput. Phys. 238(2), 154–168 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Diethelm, K.: The analysis of fractional differential equations. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  5. Ervin, V., Roop, J.: Variational formulation for the stationary fractional advection dispersion equation. Numer. Meth. Part. D. E. 22(3), 558–576 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ford, N., Simpson, A.: The numerical solution of fractional differential equations: speed versus accuracy. Numer. Algor. 26(4), 333–346 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gao, G., Sun, Z.: A compact finite difference scheme for the fractional sub-diffusion equations. J Comput. Phys. 230(3), 586–595 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hardy, G., Littlewood, J., Pólya, G.: Inequalities. Cambridge Mathematical Library Cambridge University Press (1988)

  9. Huang, J., Tang, Y., Vázquez, L., Yang, J.: Two finite difference schemes for time fractional diffusion-wave equation. Numer. Algor. 64(4), 707–720 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Jin, B., Lazarov, R., Zhou, Z.: Two finite difference schemes for time fractional diffusion-wave equation. SIAM J. Sci. Comput. 38(1), A146–A170 (2016)

    Article  MATH  Google Scholar 

  11. Li, D., Liao, H., Sun, W., Wang, J., Zhang, J.: Analysis of L1-Galerkin FEMs for time fractional nonlinear parabolic problems. Commu Comput. Phys. 24, 86–103 (2018)

    MathSciNet  Google Scholar 

  12. Li, B., Wang, T., Xie, X.: Analysis of the L1 scheme for fractional wave equations with nonsmooth data. arXiv:1908.09145 (2019)

  13. Li, B., Wang, T., Xie, X.: Analysis of a time-stepping discontinuous Galerkin method for fractional diffusion-wave equation with nonsmooth data. arXiv:1908.09189 (2019)

  14. Li, B., Wang, T., Xie, X.: Numerical analysis of a semilinear fractional diffusion equation. arXiv:1909.00016 (2019)

  15. Li, B., Luo, H., Xie, X.: Analysis of a time-stepping scheme for time fractional diffusion problems with nonsmooth data. SIAM J. Numer. Anal. 57(2), 779–798 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  16. Li, B., Luo, H., Xie, X.: A time-spectral algorithm for fractional wave problems. J. Sci. Comput. 77(2), 1164–1184 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  17. Li, B., Luo, H., Xie, X.: Error estimates of a discontinuous Galerkin method for time fractional diffusion problems with nonsmooth data. arXiv:1809.02015 (2018)

  18. Luo, H., Li, B., Xie, X.: Convergence analysis of a Petrov–Galerkin method for fractional wave problems with nonsmooth data. J. Sci Comput. 80(2), 957–992 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  19. Liu, Q., Liu, F., Turner, I., Anh, V.: Finite element approximation for a modified anomalous subdiffusion equation, vol. 35 (2011)

  20. Li, X., Xu, C.: A space-time spectral method for the time fractional diffusion equation. SIAM J. Numer. Anal. 47(3), 2108–2131 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Meerschaert, M., Tadjeran, C.: Finite difference approximations for fractional advection-dispersion flow equations. J. Comput. Appl. Math. 172(1), 65–77 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mclean, W., Mustapha, K.: Time-stepping error bounds for fractional diffusion problems with non-smooth initial data. J Comput. Phys. 293(C), 201–217 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mustapha, K.: Time-stepping discontinuous Galerkin methods for fractional diffusion problems. Numer. Math. 130(3), 497–516 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Mustapha, K., Abdallah, B., Furati, K.: A discontinuous Petrov-Galerkin method for time-fractional diffusion equations. SIAM J. Numer. Anal. 52(5), 2512–2529 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mustapha, K., Mclean, W.: Discontinuous Galerkin method for an evolution equation with a memory term of positive type. Math. Comp. 78(268), 1975–1995 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Mustapha, K., Mclean, W.: Superconvergence of a discontinuous Galerkin method for fractional diffusion and wave equations. SIAM J. Numer. Anal. 51(1), 491–515 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Mustapha, K., Mclean, W.: Uniform convergence for a discontinuous Galerkin, time-stepping method applied to a fractional diffusion equation. IMA J. Numer. Anal. 32(3), 906–925 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Mustapha, K., Schötzau, D.: Well-posedness of hp-version discontinuous Galerkin methods for fractional diffusion wave equations. IMA J. Numer. Anal. 34(4), 1426–1446 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Podlubny, I.: Fractional differential equations. Academic Press (1998)

  30. Ren, J., Long, X., Mao, S., Zhang, J.: Superconvergence of finite element approximations for the fractional diffusion-wave equation. J. Sci. Comput. 72(3), 917—935 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  31. Samko, S., Kilbas, A., Marichev, O.: Fractional integrals and derivatives: theory and applications. Gordon and Breach Science Publishers, USA (1993)

    MATH  Google Scholar 

  32. Schötzau, D., Schwab, C.: Time discretization of parabolic problems by the hp-version of the discontinuous Galerkin finite element method. SIAM J. Numer. Anal. 38(3), 837–875 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  33. Sun, Z., Wu, X.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56(2), 193–209 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  34. Thomée, V.: Galerkin finite element methods for parabolic problems. Springer, Berlin (2006)

    MATH  Google Scholar 

  35. Tartar, L.: An introduction to Sobolev spaces and interpolation spaces. Springer, Berlin (2007)

    MATH  Google Scholar 

  36. Wang, Z., Vong, S.: Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation. J. Comput. Phys. 277, 1–15 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  37. Yuste, S.: Weighted average finite difference methods for fractional diffusion equations. J. Comput. Phys. 216(1), 264–274 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  38. Yuste, S., Acedo, L.: An explicit finite difference method and a new von Neumann–type stability analysis for fractional diffusion equations. SIAM J. Numer. Anal. 42(5), 1862–1874 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  39. Yang, Y., Chen, Y., Huang, Y., Wei, H.: Spectral collocation method for the time-fractional diffusion-wave equation and convergence analysis. Comput. Math. Appl. 73(6), 1218–1232 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  40. Zhao, L., Deng, W.: Short memory principle and a predictor–corrector approach for fractional differential equations. J. Comput. Appl. Math. 40(1), 137–165 (2014)

    MathSciNet  MATH  Google Scholar 

  41. Zayernouri, M., Karniadakis, G.: Discontinuous spectral element methods for time- and space-fractional advection equations. SIAM J. Sci. Comput. 36(4), B684–B707 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  42. Zayernouri, M., Karniadakis, G.: Exponentially accurate spectral and spectral element methods for fractional odes. J. Comput. Phys. 257(2), 460–480 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  43. Zayernouri, M., Karniadakis, G.: Fractional spectral collocation method, vol. 36 (2014)

  44. Zheng, M., Liu, F., Turner, I., Anh, V.: A novel high order space-time method for the time fractional Fokker-Planck equation, vol. 37 (2015)

Download references

Funding

Binjie Li was supported in part by National Natural Science Foundation of China (11901410), and Xiaoping Xie was supported in part by National Natural Science Foundation of China (11771312).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Luo.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Properties of fractional calculus operators

Lemma A.1

[4, 29, 31] Let \( -\infty < a < b < \infty \). If \( 0 < \alpha , \beta < \infty \), then

$$ \text{I}_{a+}^{\alpha} \text{I}_{a+}^{\beta} = \text{I}_{a+}^{\alpha+\beta}, \quad \text{I}_{b-}^{\alpha} \text{I}_{b-}^{\beta}= \text{I}_{b-}^{\alpha+\beta}. $$

If \( 0 < \alpha < \beta < \infty \), then

$$ \text{D}_{a+}^{\beta} \text{I}_{a+}^{\alpha} = \text{D}_{a+}^{\beta-\alpha}, \quad \text{D}_{b-}^{\beta} \text{I}_{b-}^{\alpha} = \text{D}_{b-}^{\beta-\alpha}. $$

Lemma A.2

[5] Assume that \( -\infty < a < b < \infty \) and 0 < α < 1/2. If vHα(a,b), then

$$ \begin{array}{@{}rcl@{}} \left\lVert {\text{D}_{a+}^{\alpha} v} \right\rVert_{L^{2}(a,b)} &\leqslant& \left\lvert {v} \right\rvert_{H^{\alpha}(a,b)}, \\ \left\lVert {\text{D}_{b-}^{\alpha} v} \right\rVert_{L^{2}(a,b)} &\leqslant& \left\lvert {v} \right\rvert_{H^{\alpha}(a,b)}, \\ \left\langle {\text{D}_{a+}^{\alpha} v, \text{D}_{b-}^{\alpha} v} \right\rangle_{(a,b)} &=& \cos(\alpha\pi) \left\lvert {v} \right\rvert_{H^{\alpha}(a,b)}^{2}, \\ \left\langle {\text{D}_{a+}^{\alpha} v, \text{D}_{b-}^{\alpha} w} \right\rangle_{(a,b)}&\leqslant& \left\lvert {v} \right\rvert_{H^{\alpha}(a,b)} \left\lvert {w} \right\rvert_{H^{\alpha}(a,b)},\quad\forall w \in H^{\alpha}(a,b), \\ \left\langle {\text{D}_{a+}^{2\alpha} v, w} \right\rangle_{H^{\alpha}(a,b)} &=& \left\langle {\text{D}_{a+}^{\alpha} v, \text{D}_{b-}^{\alpha} w} \right\rangle_{(a,b)} = \left\langle {\text{D}_{b-}^{2\alpha} w, v} \right\rangle_{H^{\alpha}(a,b)}, \quad\forall w \in H^{\alpha}(a,b). \end{array} $$

Lemma A.3

Suppose that \( -\infty < a < b < \infty \) and 0 < α < 1/2. If v,wHα(a,b), then

$$ \left\langle {\text{D}_{a+}^{\alpha} v, \text{D}_{b-}^{\alpha} w} \right\rangle_{(a,b)} \leqslant \left\lvert {v} \right\rvert_{H^{\alpha}(a,b)} \left\vert\kern-0.25ex\left\vert\kern-0.25ex\left\vert\kern-0.25ex{w}\right\vert\kern-0.25ex\right\vert\kern-0.25ex\right\vert\kern-0.25ex_{H^{\alpha}(a,b)}. $$

Proof

By the definition of \(\left \vert \kern -0.25ex\left \vert \kern -0.25ex\left \vert \kern -0.25ex{\cdot }\right \vert \kern -0.25ex\right \vert \kern -0.25ex\right \vert \kern -0.25ex_{H^{\alpha }(a,b)} \), this lemma is a direct consequence of Lemma A.2. □

Lemma A.4

If α ∈ [0, 1) ∖{0.5} and \( 0 < \beta < \infty \), then

$$ \left\lVert {\text{I}_{1-}^{\beta} v} \right\rVert_{H^{\alpha+\beta}(0,1)} \leqslant C_{\alpha,\beta} \left\lVert {v} \right\rVert_{H^{\alpha}(0,1)} $$
(26)

for all \( v \in H_{0}^{\alpha }(0,1) \).

Proof

The proof is a simple modification of that of [16, Lemma 5.7]. Let us first prove that

$$ \left\lVert {\text{I}_{1-}^{\beta} w} \right\rVert_{H^{\beta}(0,1)} \leqslant C_{\beta} \left\lVert {w} \right\rVert_{L^{2}(0,1)} $$
(27)

for all wL2(0, 1) and 0 < β < 1. Extending w to \( \mathbb{R} \backslash (0,1) \) by zero, we define

$$ G(t) := \frac1{\Gamma(\beta/2)} {\int}_{t}^{\infty} (s-t)^{\beta/2-1} w(s) \mathrm{d}s, \quad -\infty < t < \infty. $$

Since 0 < β/2 < 1/2, a routine calculation yields \( G \in L^{2}(\mathbb{R}) \), and then [31, Theorem 7.1] implies

$$ \mathcal{F}G(\xi) = (-\mathrm{i}\xi)^{-\beta/2} \mathcal{F}w(\xi), \quad -\infty < \xi < \infty, $$

where \( \mathcal{F}: L^{2}(\mathbb{R}) \to L^{2}(\mathbb{R}) \) is the Fourier transform operator, and i is the imaginary unit. From the well-known Plancherel Theorem, it follows

$$ \left\lVert {G} \right\rVert_{H^{\beta/2}(\mathbb{R})} \leqslant C_{\beta} \left\lVert {w} \right\rVert_{L^{2}(0,1)}, $$

and hence

$$ \left\lVert {\text{I}_{1-}^{\beta/2} w} \right\rVert_{H^{\beta/2}(0,1)} \leqslant C_{\beta} \left\lVert {w} \right\rVert_{L^{2}(0,1)}. $$
(28)

In addition, if \( w \in {H_{0}^{1}}(0,1), \) then, since

$$ \text{D} \text{I}_{1-}^{\beta/2} w = -\text{D} \text{I}_{1-}^{\beta/2} \text{I}_{1-} w' = \text{I}_{1-}^{\beta/2} w^{\prime}, $$

the estimate (28) implies

$$ \left\lVert { \text{I}_{1-}^{\beta/2}w } \right\rVert_{H^{1+\beta/2}(0, 1) } \leqslant C_{\beta} \left\lVert {w} \right\rVert_{{H_{0}^{1}}(0,1)}. $$

Consequently, [35, Lemma 22.3] yields

$$ \left\lVert { \text{I}_{1-}^{\beta/2} w } \right\rVert_{H^{\beta}(0,1) } \leqslant C_{\beta} \left\lVert { w } \right\rVert_{H_{0}^{\beta/2}(0,1) } \quad \text{ for all } w \in H_{0}^{\beta/2}(0,1). $$
(29)

Therefore, since \(\text {I}_{1-}^{\beta } w = \text {I}_{1-}^{\beta /2} \text {I}_{1-}^{\beta /2} w \), combining (28) and (29) indicates that (27) holds for all wL2(0, 1) and 0 < β < 1.

Next, let us proceed to prove (26) . Since the case of \( \beta \in \mathbb{N} \) is trivial, we assume that k < β < k + 1 with \( k \in \mathbb{N} \), and so it suffices to prove

$$ \left\lVert {\text{I}_{1-}^{\beta-k} v} \right\rVert_{H^{\alpha+\beta-k}(0,1)} \leqslant C_{\alpha,\beta} \left\lVert {v} \right\rVert_{H^{\alpha}(0,1)}. $$
(30)

Since we have already prove that (27) holds for all wL2(0, 1) and 0 < β < 1, we obtain

$$ \begin{array}{@{}rcl@{}} \left\lVert {\text{I}_{1-}^{\beta-k} w} \right\rVert_{H^{\beta-k}(0,1)} \leqslant C_{\beta} \left\lVert {w} \right\rVert_{L^{2}(0,1)} \quad \text{ for all } w \in L^{2}(0,1), \\ \left\lVert {\text{I}_{1-}^{\beta-k} w} \right\rVert_{H^{1+\beta-k}(0,1)} \leqslant C_{\beta} \left\lVert {w} \right\rVert_{{H_{0}^{1}}(0,1)} \quad \text{ for all } w \in {H_{0}^{1}}(0,1). \end{array} $$

Therefore, using [35, Lemma 22.3] again proves (30) and thus concludes the proof of this lemma. □

Appendix B: Three inequalities

Lemma A.5

Let \( 0\leqslant a < b < \infty \) and \( 0 \leqslant \alpha < 1 \). If \( v^{\prime } \in L^{2}_{\delta }(a,b) \) with \( 0\leqslant \delta < 1 \), then

$$ {{\int}_{a}^{b}} \mathrm{d}t {{\int}_{a}^{b}} \left\lvert {v(s)-v(t)} \right\rvert^{2} \left\lvert {s-t} \right\rvert^{-1-\alpha} \mathrm{d}s \leqslant \frac{8b^{-\delta}}{1-\delta}(b-a)^{2-\alpha} \left\lVert {v'} \right\rVert_{L_{\delta}^{2}(a,b)}^{2}. $$
(31)

Moreover, if v(b) = 0, then

$$ \begin{array}{@{}rcl@{}} {{\int}_{a}^{b}} v^{2}(t) (t-a)^{-\alpha} \mathrm{d}t &\leqslant& \frac{b^{-\delta}(b-a)^{2-\alpha}}{(1-\delta)(1-\alpha)} \left\lVert {v'} \right\rVert_{L_{\delta}^{2}(a,b)}^{2}, \end{array} $$
(32)
$$ \begin{array}{@{}rcl@{}} {{\int}_{a}^{b}} v^{2}(t) (b-t)^{-\alpha} \mathrm{d}t &\leqslant& \frac{b^{-\delta}(b-a)^{2-\alpha}}{(1-\delta)(1-\alpha)} \left\lVert {v'} \right\rVert_{L_{\delta}^{2}(a,b)}^{2}. \end{array} $$
(33)

Proof

Let us first establish (32). For a < t < b, a simple computing gives

$$ \begin{array}{@{}rcl@{}} \left\lvert {v(t)} \right\rvert &=& \left\lvert {{{\int}_{t}^{b}} v'(s) \mathrm{d}s } \right\rvert \leqslant {{\int}_{t}^{b}} \left\lvert {v^{\prime}(s)} \right\rvert \mathrm{d}s\\ &\leqslant{}& \left( {{\int}_{t}^{b}} s^{-\delta} \mathrm{d}s \right)^{\frac{1}{2}} \left( {{\int}_{t}^{b}} s^{\delta} \left\lvert {v^{\prime}(s)} \right\rvert^{2} \mathrm{d}s \right)^{\frac{1}{2}} \\ &=&\sqrt{ \frac{b^{1-\delta} - t^{1-\delta}}{1-\delta} } \left\lVert {v^{\prime}} \right\rVert_{L_{\delta}^{2}(a,t)} \leqslant \sqrt{ \frac{b^{-\delta}(b-a)}{1-\delta} } \left\lVert {v^{\prime}} \right\rVert_{L_{\delta}^{2}(a,b)}, \end{array} $$

so that we obtain

$$ \begin{array}{@{}rcl@{}} {{\int}_{a}^{b}} v^{2}(t) (t-a)^{-\alpha} \mathrm{d}t \leqslant {} & \frac{b^{-\delta}(b-a)}{1-\delta} {{\int}_{a}^{b}} (t-a)^{-\alpha} \mathrm{d}t \left\lVert {v'} \right\rVert_{L_{\delta}^{2}(a,b)}^{2} \\ = {} & \frac{b^{-\delta}(b- a)^{2-\alpha}}{(1-\delta)(1-\alpha)} \left\lVert {v'} \right\rVert_{L_{\delta}^{2}(a,b)}^{2}, \end{array} $$

namely, estimate (32). Similarly, we can derive (33) by that

$$ \begin{array}{@{}rcl@{}} {{\int}_{a}^{b}} v^{2}(t) (b-t)^{-\alpha} \mathrm{d}t \leqslant {} &\frac{b^{-\delta}(b-a)}{1-\delta} {{\int}_{a}^{b}} (b-t)^{-\alpha} \mathrm{d}t \left\lVert {v'} \right\rVert_{L_{\delta}^{2}(a,b)}^{2} \\ = {} & \frac{b^{-\delta}(b- a)^{2-\alpha}}{(1-\delta)(1-\alpha)} \left\lVert {v'} \right\rVert_{L_{\delta}^{2}(a,b)}^{2}. \end{array} $$

Then, let us prove (31). Since

$$ \begin{array}{@{}rcl@{}} && {{\int}_{a}^{b}} \mathrm{d}t {{\int}_{a}^{b}} \left\lvert {v(s)-v(t)} \right\rvert^{2} \left\lvert {s-t} \right\rvert^{-1-\alpha} \mathrm{d}s \\ &={} & 2{{\int}_{a}^{b}} \mathrm{d}t {{\int}_{t}^{b}} \left\lvert {{{\int}_{t}^{s}} v'(\tau) \mathrm{d}\tau} \right\rvert^{2} (s-t)^{-1-\alpha} \mathrm{d}s \\ &={} & 2{{\int}_{a}^{b}} \mathrm{d}t {{\int}_{t}^{b}} \left( {{\int}_{0}^{1}} v'(t+\theta(s-t)) \mathrm{d}\theta\right)^{2} (s-t)^{1-\alpha} \mathrm{d}s\\ &\leqslant{} & 2(b-a)^{1-\alpha} {{\int}_{a}^{b}} \mathrm{d}t {{\int}_{t}^{b}} \left( {{\int}_{0}^{1}} v'(t+\theta(s-t)) \mathrm{d}\theta\right)^{2} \mathrm{d}s, \end{array} $$

applying Minkowski’s integral inequality (cf. [8, Eq. 6.13.9]) yields that

$$ \begin{array}{@{}rcl@{}} && {{\int}_{a}^{b}} \mathrm{d}t {{\int}_{a}^{b}} \left\lvert {v(s)-v(t)} \right\rvert^{2} \left\lvert {s-t} \right\rvert^{-1-\alpha} \mathrm{d}s \\ &\leqslant{} & 2(b-a)^{1-\alpha} {{\int}_{a}^{b}} \left( {{\int}_{0}^{1}} \sqrt{ {{\int}_{t}^{b}} \left\lvert {v'(t+\theta(s-t))} \right\rvert^{2} \mathrm{d}s } \mathrm{d}\theta \right)^{2} \mathrm{d} t \\ &={} & 2(b-a)^{1-\alpha} {{\int}_{a}^{b}} \left( {{\int}_{0}^{1}} \theta^{-1/2}\sqrt{ {\int}_{t}^{t+\theta(b-t)} \left\lvert {v'(\eta)} \right\rvert^{2} \mathrm{d}\eta } \mathrm{d}\theta \right)^{2} \mathrm{d}t. \end{array} $$

Finally, the inequality (31) is a direct consequence of

$$ \begin{array}{@{}rcl@{}} && {{\int}_{a}^{b}} \left( {{\int}_{0}^{1}} \theta^{-1/2}\sqrt{ {\int}_{t}^{t+\theta(b-t)} \left\lvert {v'(\eta)} \right\rvert^{2} \mathrm{d}\eta } \mathrm{d}\theta \right)^{2} \mathrm{d}t\\ &\leqslant{} & {{\int}_{a}^{b}} \left( {{\int}_{0}^{1}} \theta^{-1/2}\sqrt{ {\int}_{t}^{t+\theta(b-t)} (\eta/t)^{\delta} \left\lvert {v'(\eta)} \right\rvert^{2} \mathrm{d}\eta } \mathrm{d}\theta \right)^{2} \mathrm{d}t \\ &={} & {{\int}_{a}^{b}} t^{-\delta} \left( {{\int}_{0}^{1}} \theta^{-1/2} \sqrt{ {\int}_{t}^{t+\theta(b-t)} \eta^{\delta} \left\lvert {v'(\eta)} \right\rvert^{2} \mathrm{d}\eta } \mathrm{d}\theta \right)^{2} \mathrm{d}t \\ &\leqslant{} & {{\int}_{a}^{b}} t^{-\delta} \left( {{\int}_{0}^{1}} \theta^{-1/2} \mathrm{d}\theta \right)^{2} \mathrm{d}t \left\lVert {v'} \right\rVert_{L_{\delta}^{2}(a,b)}^{2} \\ &\leqslant{} & \frac{4b^{-\delta}(b-a)}{1-\delta} \left\lVert {v'} \right\rVert_{L_{\delta}^{2}(a,b)}^{2}. \end{array} $$

This lemma is thus proved. □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Luo, H. & Xie, X. A space-time finite element method for fractional wave problems. Numer Algor 85, 1095–1121 (2020). https://doi.org/10.1007/s11075-019-00857-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-019-00857-w

Keywords

Navigation