Skip to main content
Log in

Orthogonal sequences constructed from quasi-orthogonal ultraspherical polynomials

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Let \(\displaystyle \{x_{k,n-1}\}_{k=1}^{n-1}\) and \(\displaystyle \{x_{k,n}\}_{k=1}^{n},\)\(n \in \mathbb {N}\), be two sets of real, distinct points satisfying the interlacing property \( x_{i,n}<x_{i,n-1}< x_{i+1,n}, i = 1,2,\dots ,n-1\). In [15], Wendroff proved that if \(p_{n-1}(x) = \displaystyle \prod \limits _{k=1}^{n-1} (x-x_{k,n-1})\) and \(p_{n}(x) = \displaystyle \prod \limits _{k=1}^{n} (x-x_{k,n})\), then pn− 1 and pn can be embedded in a non-unique monic orthogonal sequence \(\{p_{n}\}_{n=0}^{\infty }. \) We investigate a question raised by Mourad Ismail as to the nature and properties of orthogonal sequences generated by applying Wendroff’s Theorem to the interlacing zeros of \(C_{n-1}^{\lambda }(x)\) and \( (x^{2}-1) C_{n-2}^{\lambda }(x)\), where \(\{C_{k}^{\lambda }(x)\}_{k=0}^{\infty }\) is a sequence of monic ultraspherical polynomials and − 3/2 < λ < − 1/2, λ≠ − 1. We construct an algorithm for generating infinite monic orthogonal sequences \(\{D_{k}^{\lambda }(x)\}_{k=0}^{\infty }\) from the two polynomials \(D_{n}^{\lambda } (x): = (x^{2}-1) C_{n-2}^{\lambda } (x)\) and \(D_{n-1}^{\lambda } (x): = C_{n-1}^{\lambda } (x)\), which is applicable for each pair of fixed parameters n, λ in the ranges \(n \in \mathbb {N}, n \geq 5\) and λ > − 3/2, λ≠ − 1,0,(2k − 1)/2, k = 0,1,…. We plot and compare the zeros of \(D_{m}^{\lambda } (x)\) and \(C_{m}^{\lambda } (x)\) for selected choices of \(m \in \mathbb {N}\) and a range of values of the parameters λ and n. For − 3/2 < λ < − 1, the curves that the zeros of \(D_{m}^{\lambda } (x)\) and \(C_{m}^{\lambda } (x)\) approach are substantially different for large values of m. In contrast, when − 1 < λ < − 1/2, the two curves have a similar shape while the curves are almost identical for λ > − 1/2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Beardon, A., Driver, K., Jordaan, K.: Zeros of polynomials embedded in an orthogonal sequence. Numer. Algor. 48(3), 399–403 (2011)

    Article  MathSciNet  Google Scholar 

  2. Bihun, O.: Solvable dynamical systems and isospectral matrices defined in terms of the zeros of orthogonal or otherwise special polynomials. In: Euler, N. (ed.) Nonlinear Systems and Their Remarkable Mathematical Structures. CRC Press, Boca Raton (2018)

  3. Brezinski, C., Driver, K.A., Redivo-Zaglia, M.: Quasi-orthogonality with applications to some families of classical orthogonal polynomials. Appl. Numer. Math. 48, 157–168 (2004)

    Article  MathSciNet  Google Scholar 

  4. Brezinski, C., Driver, K.A., Redivo-Zaglia, M.: Zeros of quadratic quasi-orthogonal order 2 polynomials. Appl. Numer. Math. 139, 143–145 (2019)

    Article  MathSciNet  Google Scholar 

  5. Bultheel, A., Cruz-Barroso, R., van Barel, M.: On Gauss-type quadrature formulas with prescribed nodes anywhere on the real line. Calcolo 47, 21–48 (2010)

    Article  MathSciNet  Google Scholar 

  6. Driver, K., Duren, P.: Zeros of ultraspherical polynomials and the Hilbert-Klein formulas. J. Comp. Appl. Math. 135, 293–301 (2001)

    Article  MathSciNet  Google Scholar 

  7. Driver, K., Muldoon, M.E.: Zeros of quasi-orthogonal ultraspherical polynomials. Indag. Math. 27(4), 930–944 (2016)

    Article  MathSciNet  Google Scholar 

  8. Driver, K., Muldoon, M.E.: Bounds for extreme zeros of quasi-orthogonal ultraspherical polynomials. J. Class. Anal. 9, 69–78 (2016)

    Article  MathSciNet  Google Scholar 

  9. Koekoek, R., Lesky, P.A., Swarttouw, R.F.: Hypergeometric Orthogonal Polynomials and Their q-Analogues. Springer Monographs in Mathematics (2010)

  10. Locher, F.: Stability test for linear difference forms. Numerical Integration IV (Oberwolfach, 1992). Internat. Ser. Numer. Math, vol. 112, pp. 215–223 (1993)

  11. Lubinsky, D.S.: Quadrature identities for interlacing and orthogonal polynomials. Proc. A. M. S. 144, 4819–4829 (2016)

    Article  MathSciNet  Google Scholar 

  12. Mastroianni, G, Occorsio, D: Optimal systems of nodes for Lagrange Interpolation on bounded intervals, A survey. J. Comput. Appl. Math. 134, 325–341 (2001)

    Article  MathSciNet  Google Scholar 

  13. Simon, B.: Orthogonal Polynomials on the Unit Circle, Part 1, Classical Theory. American Math. Soc., Providence (2005)

    MATH  Google Scholar 

  14. Szegő, G.: Orthogonal Polynomials, American Mathematical Society Colloquium Publications, vol. 23, 4th edn (1975)

  15. Wendroff, B.: On orthogonal polynomials. Proc. Amer. Math. Soc. 12, 554–555 (1961)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Kathy Driver would like to express her thanks to the Mathematics Department, University of Colorado, Colorado Springs, for its hospitality during her visit in Spring 2018, during which the work on this paper began.

Funding

Research of Kathy Driver is supported by the National Research Foundation of South Africa under grant number 115232.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oksana Bihun.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1. Mathematica script for construction of an orthogonal sequence \(\{D_j^{\lambda }\}_{j=0}^{N+K-2}\), N ≥ 5, K ≥ 3


(* Mathematica script to construct the orthogonal sequence {D_j^\ \[Lambda]}, where 0\[LessEqual]j\[LessEqual]NN+KK-2, from the \ starting polynomials D_NN^\[Lambda](x)=(x^2-1) C_(NN-2)^\[Lambda](x) \ and D_(NN-1)^\[Lambda]=C_(NN-1)^\[Lambda](x) *) ClearAll; NN = 5; KK = 11; \[Lambda] = -5/4; \[Sigma] = 2; a = (4 (2 + \[Lambda]))/(3 (3 + 2 \[Lambda])); (*Compute DNm1=D_N^\[Lambda]*) KN = Coefficient[(x^2 - 1) JacobiP[ NN - 2, \[Lambda] - 1/2, \[Lambda] - 1/2, x], x^NN]; DN = Simplify[ 1/KN (x^2 - 1) JacobiP[NN - 2, \[Lambda] - 1/2, \[Lambda] - 1/2, x]]; (*Compute DNm1=D_(N-1)^\[Lambda]*) KNm1 = Coefficient[ JacobiP[NN - 1, \[Lambda] - 1/2, \[Lambda] - 1/2, x], x^(NN - 1)]; DNm1 = Simplify[ 1/KNm1 JacobiP[NN - 1, \[Lambda] - 1/2, \[Lambda] - 1/2, x]]; (* Construct D_j^\[Lambda] for j=N-2,N-3,...,0, in the array \ DjLowerDegrees *) \[Beta]2 = Table[0, {j, 1, NN}]; (*\[Beta]2[[1]] must be zero*) ell = Table[0, {j, 1, NN}]; (*ell[[1]] will not contain any information*) \[Beta]2[[NN]] = Simplify[Coefficient[DN, x^(NN - 2)]]; \[Beta]2[[NN - 1]] = Simplify[Coefficient[DNm1, x^(NN - 3)]]; ell[[NN]] = Simplify[\[Beta]2[[NN - 1]] - \[Beta]2[[NN]]]; Clear[DjLowerDegrees]; DjLowerDegrees = Table[0, {k, 0, NN}]; DjLowerDegrees[[(NN) + 1]] = DN; DjLowerDegrees[[(NN - 1) + 1]] = DNm1; Do[{j = k + 2; DjLowerDegrees[[(NN - j) + 1]] = Simplify[-1/ ell[[NN - j + 2]] (DjLowerDegrees[[(NN - j + 2) + 1]] - x DjLowerDegrees[[(NN - j + 1) + 1]])]; If[j == NN - 2, \[Beta]2[[2]] = Simplify[DjLowerDegrees[[(2) + 1]] - x^2], \[Beta]2[[NN - j]] = Simplify[ Coefficient[DjLowerDegrees[[(NN - j) + 1]], x^(NN - j - 2)]]]; ell[[NN - j + 1]] = \[Beta]2[[NN - j]] - \[Beta]2[[NN - j + 1]]; }, {k, 0, NN - 2}]; (* Construct D_j^\[Lambda] for j=N+1,N+2,...,N+M, in the array \ DjUpperDegrees *) Clear[DjUpperDegrees]; DjUpperDegrees = Table[0, {k, 1, KK}];(* DjUpperDegrees [[k]]=D_{N+k-2}^\[Lambda]*) DjUpperDegrees[[1]] = DNm1; DjUpperDegrees[[2]] = DN; ellNp1 = Simplify[(a DN /. x -> a)/(\[Sigma] DNm1 /. x -> a)]; DjUpperDegrees[[3]] = Simplify[x DN - ellNp1 DNm1]; ellNpj = (\[Sigma] - 1)/\[Sigma]^2 a^2; Do[{ DjUpperDegrees[[j + 2]] = Simplify[ x DjUpperDegrees[[j + 1]] - ellNpj DjUpperDegrees[[j]]]; }, {j, 2, KK - 2}]; (*Print out DjLowerDegrees in standard form*) Print["N = ", NN, ", \[Lambda]=", \[Lambda], ", KK=", KK, ", a=", a] Do[{CoefRulesDj = Simplify[CoefficientRules[ DjLowerDegrees[[j]], {x}]]; DNPrint = TraditionalForm[FromCoefficientRules[CoefRulesDj, {x}], ParameterVariables :> {\[Lambda]}]; Print["D_", j - 1, "^\[Lambda] = ", TraditionalForm[DNPrint, ParameterVariables :> {\[Lambda]}], "."]}, {j, 1, NN + 1}]; (*Print out DjUpperDegrees in standard form*) Do[{CoefRulesDj = Simplify[CoefficientRules [DjUpperDegrees[[j]], {x}]]; DNPrint = TraditionalForm[FromCoefficientRules[CoefRulesDj, {x}], ParameterVariables :> {\[Lambda]}]; Print["D_", NN + j - 2, "^\[Lambda] = ", TraditionalForm[DNPrint, ParameterVariables :> {\[Lambda]}], "."];}, {j, 1, KK}];

Appendix: 2. The first 11 terms of the polynomial sequence \(\{D_m^{\lambda }\}_{m=0}^{\infty }\) with n = 5, k = 5, σ = 2, and \(a=\frac {4(2+\lambda )}{3(3+2\lambda )}\)

In this section we compute the first several terms of the sequence \(\{D_m^{\lambda }\}_{m=0}^{\infty }\) for a specific choice of parameters. The purpose of this example is to get a glimpse of the symbolic expressions for the polynomials for a general (not fixed) value of λ. The example also provides a way to verify correctness of programming for those readers who are interested to implement the algorithm developed in Section 4, using programming environment of their choice. We thus provide the first 11 terms of the polynomial sequence \(\{D_m^{\lambda }\}_{m=0}^{\infty }\) obtained using the algorithm developed in Section 4 with n = 5, k = 5, σ = 2, and \(a=\frac {4(2+\lambda )}{3(3+2\lambda )}\), where \(\lambda \in (-\frac {3}{2}, +\infty )\), λ≠− 1, 0 and λ≠(2k − 1)/2, k = 0, 1, 2,…:

$$ \begin{array}{@{}rcl@{}} &&D_{0}^{\lambda}(x) = 1,\\ &&D_{1}^{\lambda}(x) = x,\\ &&D_{2}^{\lambda}(x) = x^{2}-\frac{2 \lambda^{2}+7 \lambda+9}{2 (2 \lambda^{3}+7 \lambda^{2}+9 \lambda+6)},\\ &&D_{3}^{\lambda}(x) = x^{3}-\frac{3 (2 \lambda+5)}{2 (2 \lambda^{2}+7 \lambda+9)}x,\\ &&D_{4}^{\lambda}(x) = x^{4}-\frac{3 }{\lambda+3}x^{2}+\frac{3}{4 (\lambda^{2}+5 \lambda+6)},\\ &&D_{5}^{\lambda}(x) = x^{5}-\frac{(2 \lambda+7) }{2 \lambda+4}x^{3}+\frac{3 }{2 \lambda+4} x, \end{array} $$
$$ \begin{array}{@{}rcl@{}} &&D_{6}^{\lambda}(x) = x^{6}\\ &&+\frac{-26624 \lambda^{8}-315136 \lambda^{7}-1452096 \lambda^{6}-3030464 \lambda^{5}-1350544 \lambda^{4}+6634848 \lambda^{3}+14325052 \lambda^{2}+11993936 \lambda+3814971) }{18 (\lambda+2) (2 \lambda+3)^{2} (512 \lambda^{5}+2944 \lambda^{4}+5208 \lambda^{3}+4 \lambda^{2}-8638 \lambda-6429)}x^{4}\\ &&-\frac{(-8192 \lambda^{7}-55552 \lambda^{6}-93408 \lambda^{5}+238480 \lambda^{4}+1249616 \lambda^{3}+2167224 \lambda^{2}+1773274 \lambda+577325) }{6 (\lambda+2) (2 \lambda+3)^{2} (512 \lambda^{5}+2944 \lambda^{4}+5208 \lambda^{3}+4 \lambda^{2}-8638 \lambda-6429)} x^{2}\\ &&+\frac{4 (2 \lambda+1)^{2} (80 \lambda^{3}+426 \lambda^{2}+753 \lambda+442)}{3 (2 \lambda+3)^{2} (512 \lambda^{5}+2944 \lambda^{4}+5208 \lambda^{3}+4 \lambda^{2}-8638 \lambda-6429)},\\\\ && D_{7}^{\lambda}(x) = x^{7}\\ &&+\frac{(-10240 \lambda^{8}-121088 \lambda^{7}-561408 \lambda^{6}-1198624 \lambda^{5}-656672 \lambda^{4}+2255736 \lambda^{3}+5154212 \lambda^{2}+4387984 \lambda+1408809) }{6 (\lambda+2) (2 \lambda+3)^{2} (512 \lambda^{5}+2944 \lambda^{4}+5208 \lambda^{3}+4 \lambda^{2}-8638 \lambda-6429)}x^{5}\\ &&+\frac{4096 \lambda^{8}+78848 \lambda^{7}+458688 \lambda^{6}+1074016 \lambda^{5}+295376 \lambda^{4}-3734688 \lambda^{3}-8130836 \lambda^{2}-7213054 \lambda-2452023}{18 (\lambda+2) (2 \lambda+3)^{2} (512 \lambda^{5}+2944 \lambda^{4}+5208 \lambda^{3}+4 \lambda^{2}-8638 \lambda-6429)}x^{3}\\ &&-\frac{2 (512 \lambda^{6}+3328 \lambda^{5}+7048 \lambda^{4}+828 \lambda^{3}-19042 \lambda^{2}-28747 \lambda-13742) }{3 (2 \lambda+3)^{2} (512 \lambda^{5}+2944 \lambda^{4}+5208 \lambda^{3}+4 \lambda^{2}-8638 \lambda-6429)}x,\\ && D_{8}^{\lambda}(x) = x^{8}\\ &&+\frac{-34816 \lambda^{8}-411392 \lambda^{7}-1916352 \lambda^{6}-4161280 \lambda^{5}-2589488 \lambda^{4}+6899568 \lambda^{3}+16600220 \lambda^{2}+14333968 \lambda+4637883}{18 (\lambda+2) (2 \lambda+3)^{2} (512 \lambda^{5}+2944 \lambda^{4}+5208 \lambda^{3}+4 \lambda^{2}-8638 \lambda-6429)}x^{6}\\ &&+\Big[\frac{253952 \lambda^{10}+4967424 \lambda^{9}+36636672 \lambda^{8}+134987136 \lambda^{7}+240904128 \lambda^{6}+28003872 \lambda^{5}-813980016 \lambda^{4}}{162 (\lambda+2) (2 \lambda+3)^{4} (512 \lambda^{5}+2944 \lambda^{4}+5208 \lambda^{3}+4 \lambda^{2}-8638 \lambda-6429)}\\ &&-\frac{1823644104 \lambda^{3}+1962244068 \lambda^{2}+1102018370 \lambda+259653399}{162 (\lambda+2) (2 \lambda+3)^{4} (512 \lambda^{5}+2944 \lambda^{4}+5208 \lambda^{3}+4 \lambda^{2}-8638 \lambda-6429)} \Big]x^{4}\\ &&-\frac{8 (6656 \lambda^{8}+61760 \lambda^{7}+214784 \lambda^{6}+252224 \lambda^{5}-437944 \lambda^{4}-1922704 \lambda^{3}-2812378 \lambda^{2}-1984129 \lambda-566938) }{27 (2 \lambda+3)^{4} (512 \lambda^{5}+2944 \lambda^{4}+5208 \lambda^{3}+4 \lambda^{2}-8638 \lambda-6429)}x^{2}\\ &&-\frac{16 (\lambda+2)^{3} (2 \lambda+1)^{2} (80 \lambda^{2}+266 \lambda+221)}{27 (2 \lambda+3)^{4} (512 \lambda^{5}+2944 \lambda^{4}+5208 \lambda^{3}+4 \lambda^{2}-8638 \lambda-6429)},\\\\ &&D_{9}^{\lambda}(x) = x^{9}\\ &&+\frac{-38912 \lambda^{8}-459520 \lambda^{7}-2148480 \lambda^{6}-4726688 \lambda^{5}-3208960 \lambda^{4}+7031928 \lambda^{3}+17737804 \lambda^{2}+15503984 \lambda+5049339 }{18 (\lambda+2) (2 \lambda+3)^{2} (512 \lambda^{5}+2944 \lambda^{4}+5208 \lambda^{3}+4 \lambda^{2}-8638 \lambda-6429)}x^{7}\\ &&+\Big[\frac{376832 \lambda^{10}+6912000 \lambda^{9}+49677312 \lambda^{8}+182130432 \lambda^{7}+333265728 \lambda^{6}+89989248 \lambda^{5}-952585632 \lambda^{4}}{162 (\lambda+2) (2 \lambda+3)^{4} (512 \lambda^{5}+2944 \lambda^{4}+5208 \lambda^{3}+4 \lambda^{2}-8638 \lambda-6429)}\\ &&-\frac{2231977416 \lambda^{3}+2437175184 \lambda^{2}+1380264434 \lambda+327276231}{162 (\lambda+2) (2 \lambda+3)^{4} (512 \lambda^{5}+2944 \lambda^{4}+5208 \lambda^{3}+4 \lambda^{2}-8638 \lambda-6429)} \Big]x^{5}\\ &&-\frac{2 (4096 \lambda^{9} + 166912 \lambda^{8} + 1357504 \lambda^{7} + 4568800 \lambda^{6} + 5470096 \lambda^{5} - 8399264 \lambda^{4} - 38672660 \lambda^{3} - 57223262 \lambda^{2} - 40687679 \lambda - 11707302) }{81 (2 \lambda+3)^{4} (512 \lambda^{5}+2944 \lambda^{4}+5208 \lambda^{3}+4 \lambda^{2}-8638 \lambda-6429)}x^{3}\\ &&+\frac{8 (\lambda+2)^{3} (512 \lambda^{5}+1664 \lambda^{4}-328 \lambda^{3}-8108 \lambda^{2}-13238 \lambda-7313)}{27 (2 \lambda+3)^{4} (512 \lambda^{5}+2944 \lambda^{4}+5208 \lambda^{3}+4 \lambda^{2}-8638 \lambda-6429)}x,\\\\ &&D_{10}^{\lambda}(x) = x^{10}\\ &&+\frac{(-14336 \lambda^{8}-169216 \lambda^{7}-793536 \lambda^{6}-1764032 \lambda^{5}-1276144 \lambda^{4}+2388096 \lambda^{3}+6291796 \lambda^{2}+5558000 \lambda+1820265)}{6 (\lambda+2) (2 \lambda+3)^{2} (512 \lambda^{5}+2944 \lambda^{4}+5208 \lambda^{3}+4 \lambda^{2}-8638 \lambda-6429)}x^{8}\\ &&+\Big[\frac{57344 \lambda^{1}0+ 1012736 \lambda^{9}+7164672 \lambda^{8}+26224384 \lambda^{7}+48985088 \lambda^{6}+18933696 \lambda^{5}-120883088 \lambda^{4}}{18 (\lambda+2) (2 \lambda+3)^{4} (512 \lambda^{5}+2944 \lambda^{4}+5208 \lambda^{3}+4 \lambda^{2}-8638 \lambda-6429)}\\ &&-\frac{296145544 \lambda^{3}+327852636 \lambda^{2}+187090450 \lambda+44609151}{18 (\lambda+2) (2 \lambda+3)^{4} (512 \lambda^{5}+2944 \lambda^{4}+5208 \lambda^{3}+4 \lambda^{2}-8638 \lambda-6429)} \Big]x^{6}\\ &&-\Big[\frac{4 (\lambda+2) (200704 \lambda^{1}0+ 5561856 \lambda^{9}+45776256 \lambda^{8}+174881280 \lambda^{7}+305832480 \lambda^{6}-27524064 \lambda^{5}) }{729 (2 \lambda+3)^{6} (512 \lambda^{5}+2944 \lambda^{4}+5208 \lambda^{3}+4 \lambda^{2}-8638 \lambda-6429)}\\ &&-\frac{1252067256 \lambda^{4}+2680180104 \lambda^{3}+2833083030 \lambda^{2}+1572495406 \lambda+366899565}{729 (2 \lambda+3)^{6} (512 \lambda^{5}+2944 \lambda^{4}+5208 \lambda^{3}+4 \lambda^{2}-8638 \lambda-6429)} \Big]x^{4}\\ &&+\frac{8 (\lambda+2)^{3} (45056 \lambda^{7}+308992 \lambda^{6}+680928 \lambda^{5}-126736 \lambda^{4}-3262160 \lambda^{3}-6273816 \lambda^{2}-5263402 \lambda-1726229) }{243 (2 \lambda+3)^{6} (512 \lambda^{5}+2944 \lambda^{4}+5208 \lambda^{3}+4 \lambda^{2}-8638 \lambda-6429)}x^{2}\\ &&+\frac{64 (\lambda+2)^{5} (2 \lambda+1)^{2} (80 \lambda^{2}+266 \lambda+221)}{243 (2 \lambda+3)^{6} (512 \lambda^{5}+2944 \lambda^{4}+5208 \lambda^{3}+4 \lambda^{2}-8638 \lambda-6429)}. \end{array} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bihun, O., Driver, K. Orthogonal sequences constructed from quasi-orthogonal ultraspherical polynomials. Numer Algor 85, 503–522 (2020). https://doi.org/10.1007/s11075-019-00824-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-019-00824-5

Keywords

Mathematics Subject Classification (2010)

Navigation