Skip to main content
Log in

An explicit six-step singularly P-stable Obrechkoff method for the numerical solution of second-order oscillatory initial value problems

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, we present an explicit six-step singularly P-stable Obrechkoff method of tenth algebraic order for solving second-order linear periodic and oscillatory initial value problems of ordinary differential equations. The advantage of this new singularly P-stable Obrechkoff method is that it is a high-order explicit method, and thus does not require additional predictor stages. The numerical stability and phase properties of the new method is analyzed. Four numerical examples show that the new explicit method is more accurate than Obrechkoff schemes of the same order when applied to the numerical solution of second-order initial value problems with highly oscillatory solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Alolyan, I., Anastassi, Z.A., Simos, T.E.: A new family of symmetric linear four-step methods for the efficient integration of schrödinger equation and related oscilltory problems. Appl. Math. Comput. 218(9), 5370–5382 (2012)

    MATH  MathSciNet  Google Scholar 

  2. Alolyan, I., Simos, T.E.: A family of high-order multistep methods with vanished phase-lag and its derivatives for the numerical solution of the schrödinger equation. Computers & Mathematics with Applications 62(10), 3756–3774 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  3. Alolyan, I., Simos, T.E.: High algebraic order methods with vanished phase lag and its first derivative for the numerical solution of the Schr{”odinger equation. J. Math Chem. 48(4), 925–958 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  4. Alolyan, I., Simos, T.E.: Mulitstep methods with vanished phase-lag and its first and second derivatives for the numerical integration of the schrödinger equation. J. Math. Chem. 48(4), 1092–1143 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  5. Berg, D.B., Simos, T.E., Tsitouras, Ch.: Trigonometric fitted, eight-order explicit Numerov-type methods. Math. Methods Appl. Sci. 41(5), 1845–1854 (2018)

    Article  MATH  MathSciNet  Google Scholar 

  6. Dong, M., Simos, T.E.: A new high algebraic order efficient finite difference method for the solution of the schrödinger equation. Filomat 31(15), 4999–5012 (2017)

    Article  MathSciNet  Google Scholar 

  7. Franco, J.M., Palacios, M.: High-order P-stable multistep methods. J. Comput. Appl. Math. 30(1), 1–10 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  8. Lambert, J.D., Watson, I.A.: Symmetric multistep methods for periodic initial value problems. J. Inst. Math. Appl. 18, 189–202 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  9. Medvedev, M.A., Simos, T.E., Tsitouras, Ch.: Explicit, two-stages, sixth-order, hybrid four-step methods for solving \(y^{\prime \prime }(x)=f(x,y)\). Math. Methods Appl. Sci. 41(6), 6997–7006 (2018)

    Article  MATH  MathSciNet  Google Scholar 

  10. Medvedev, M.A., Simos, T.E., Tsitouras, Ch.: Trigonometric fitted hybrid four-step methods of sixth order for solving \(y^{\prime \prime }(x)=f(x,y)\). Math. Methods Appl. Sci. 42(2), 710–716 (2019)

    Article  MATH  MathSciNet  Google Scholar 

  11. Neta, B.: P-stable symmetric super-implicit methods for periodic initial value problems. Comput. Math. Appl. 50(5-6), 701–705 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  12. Neta, B., Fukushima, T.: Obrechkoff versus super-implicit methods for the integration of keplerian orbits. In: Proc. AIAA/AAS Astrodynamics Specialist Conference, Denver, CO, August 14-17, 2000, Paper Number AIAA 2000-4029

  13. Quinlan, G.D., Tremaine, S.: Symmetric multistep methods for the numerical integration of planetary orbits. The Astro. J. 100(5), 1694–1700 (1990)

    Article  Google Scholar 

  14. Raptis, A.D.: Exponentially-fitted solutions of the eigenvalue shrödinger equation with automatic error control. J. Comput. Phys. Commun. 28, 427–431 (1983)

    Article  Google Scholar 

  15. Raptis, A.D., Allison, A.C.: Exponential-fitting methods for the numerical solution of the schrödinger equation. J. Comput. Phys. Commun. 14, 1–5 (1978)

    Article  Google Scholar 

  16. Shokri, A.: A new eight-order symmetric two-step multiderivative method for the numerical solution of second-order IVPs with oscillating solutions. Numer. Algor. 77 (1), 95–109 (2018)

    Article  MATH  MathSciNet  Google Scholar 

  17. Shokri, A: The symmetric two-step P-stable nonlinear predictor-corrector methods for the numerical solution of second order initial value problems. Bull. Iranian Math. Soc. 41, 191–205 (2015)

    MATH  MathSciNet  Google Scholar 

  18. Shokri, A., Mehdizadeh Khalsaraei, M., Tahmourasi, M., Garcia-Rubio, R.: A new family of three-stage two-step P-stable multiderivative methods with vanished phase-lag and some of its derivatives for the numerical solution of radial schrödinger equation and IVPs with oscillating solutions. Numer. Algor. 80(2), 557–593 (2018)

    Article  MATH  Google Scholar 

  19. Shokri, A., Rahimi Ardabili, M.Y., Shahmorad, S., Hojjati, G.: A new two-step P-stable hybrid Obrechkoff method for the numerical integration of second-order IVPs. J. Comput. Appl. Math. 235, 1706–1712 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  20. Shokri, A., Saadat, H.: High phase-lag order trigonometrically fitted two-step Obrechkoff methods for the numerical solution of periodic initial value problems. Numer. Algor. 68, 337–354 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  21. Shokri, A., Saadat, H.: Trigonometrically fitted high-order predictor-corrector method with phase-lag of order infinity for the numerical solution of radial schrödinger equation. J. Math. Chem. 52, 1870–1894 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  22. Shokri, A., Tahmourasi, M.: A new efficient implicit four-step method with vanished phase-lag and its first derivative for the numerical solution of the radial Schrödinger equation. J. Mod Methods Numer. Math. 8(1-2), 77–89 (2017)

    Article  MATH  MathSciNet  Google Scholar 

  23. Shokri, A., Tahmourasi, M.: new two-step Obrechkoff method with vanished phase-lag and some of its derivatives for the numerical solution of radial Schrödinger equation and related IVPs with oscillating solutions. Iranian J. Math. Chem. 8(2), 137–159 (2017)

    MATH  Google Scholar 

  24. Shokri, A., Vigo-Aguiar, J., Mehdizadeh Khalsaraei, M., Garcia-Rubio, R.: A new class of two-step P-stable TFPL methods for the numerical solution of second order IVPs with oscillating solutions. J. Comput. Appl. Math. 354, 551–561 (2019)

    Article  MATH  MathSciNet  Google Scholar 

  25. Shokri, A., Vigo-Aguiar, J., Mehdizadeh Khalsaraei, M., Garcia-Rubio, R.: A new four-step P-stable Obrechkoff method with vanished phase-lag and some of its derivatives for the numerical solution of radial schrödinger equation. J. Comput. Appl. Math. 354, 569–586 (2019)

    Article  MATH  MathSciNet  Google Scholar 

  26. Shokri, A., Vigo-Aguiar, J., Mehdizadeh Khalsaraei, M., Garcia-Rubio, R.: A new implicit six-step P-stable method for the numerical solution of Schrödinger equation, Int. J. Comput. Math. https://doi.org/10.1080/00207160.2019.1588257(2019)

  27. Simos, T.E., Tsitouras, Ch.: A new family of 7 stages, eight-order explicit Numerov-type methods. Math. Methods Appl. Sci. 40(18), 7876–7878 (2017)

    MATH  MathSciNet  Google Scholar 

  28. Simos, T.E., Tsitouras, Ch.: Evolutionary generation of high-order, explicit, two-step methods for second order linear IVPs. Math. Methods Appl. Sci. 40(18), 6276–6284 (2017)

    Article  MATH  MathSciNet  Google Scholar 

  29. Simos, T.E., Tsitouras, Ch.: High phase-lag order, four-step methods for solving \(y^{\prime \prime }=f(x,y)\). Appl. Comput. Math. 17(3), 307–316 (2018)

    MATH  MathSciNet  Google Scholar 

  30. Simos, T.E., Tsitouras, Ch., Famelis, I.Th.: Explicit Numerov type methods with constant coefficients: a review. Appl. Comput. Math. 16(2), 89–113 (2017)

    MATH  MathSciNet  Google Scholar 

  31. Simos, T.E., Vigo-Aguiar, J.: An exponentially-fitted high order method for long-term integration of periodic initial-value problems. Comput. Phys. Commun. 140(3), 358–365 (2001)

    Article  MATH  Google Scholar 

  32. Simos, T.E., Williams, P.S.: A finite-difference meth od for the numerical solution of the schrödinger equation. J. Comput. Appl. Math. 79(2), 189–205 (1997)

    Article  MathSciNet  Google Scholar 

  33. Steifel, E., Bettis, D.G.: Stabilization of Cowells methods. Numer. Math. 13, 154–175 (1969)

    Article  MathSciNet  Google Scholar 

  34. Tsitouras, Ch., Simos, T.E.: Trigonometric fitted explicit Numerov type method with vanishing phase-lag and its first and second derivatives. Mediterr J Math 15, 168 (2018). https://doi.org/10.1007/s00009-018-1216-7

    Article  MATH  MathSciNet  Google Scholar 

  35. Tsitouras, Ch., Simos, T.E.: On ninth order, explicit Numerov type methods with constant coefficients. Mediterr. J. Math. 15, 46 (2018). https://doi.org/10.1007/s00009-018-1089-9

    Article  MATH  MathSciNet  Google Scholar 

  36. Vigo-Aguiar, J., Ramos, H.: Variable stepsize implementation of multistep methods for \(y^{\prime \prime }=f(x,y,y^{\prime })\). J. Comput. Appl. Math. 192, 114–131 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  37. Wang, Z.: P-stable linear symmetric multistep methods for periodic initial-value problems. Comput. Phys. Commun. 171(3), 162–174 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  38. Wang, Z., Wang, Y.: A new kind of high efficient and high accurate P-stable Obrechkoff three-step method for periodic initial value problems. Comput. Phys. Commun. 171(2), 79–92 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  39. Wang, Z., Zhao, D., Dai, Y., Song, X.: A new high efficient and high accurate Obrechkoff four-step method for the periodic non-linear undamped duffings equation. Comput. Phys. Commun. 165, 110–126 (2005)

    Article  MATH  Google Scholar 

  40. Wang, Z., Zhao, D., Dai, Y., Wu, D.: An improved trigonometrically fitted P-stable Obrechkoff method for periodic initial value problems. Proc. R. Soc. 461, 1639–1658 (2005)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the anonymous referees for their careful reading of the manuscript and their fruitful comments and suggestions which improved the presentation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Mehdizadeh Khalsaraei.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

$$ \begin{array}{@{}rcl@{}} A_{00}&=&-~7200\left( v^{8}+\left( -~2s^{2}-\frac{781}{36}\right)v^{6}+\left( s^{4}+\frac{161}{6}s^{2} +\frac{965}{24}\right)v^{4}\right.\\ &&+\left( -~\frac{35}{12}s^{4}-15-\frac{155}{4}s^{2}\right)v^{2} + \left.15s^{2}+\frac{15}{8}s^{4}\right)v\left( \cos(v)\right)^{7}\\ &&+\left( \left( 55500v^{8}+ \left( -~72000s^{2}-257100\right)v^{6}\right.\right.\\ &&+ \left( 16500s^{4}+294600s^{2}+225000\right)v^{4}\\ &&+\left.\left( -~13500s^{4}-225000s^{2}-27000 \right)v^{2}+27000s^{2}\right)\sin(v)\\ &&- 96(s+v)(s-v)v^{5}\left( -v^{6}+\left( -\frac{29}{2}+s^{2}\right)v^{4}\right. +\left( -~\frac{31}{2}-\frac{29}{6}s^{2}\right)v^{2}-\frac{1}{2}s^{2}\\ &&-\left.\left.12\right)\right)\left( \cos(v)\right)^{6}-464\left( (s+v)(s-v)\left( \frac{7}{29}v^{4}+ \left( \frac{63}{29}+s^{2}\right)v^{2}+\frac{108}{29}-\frac{3}{29}s^{2}\right) v^{5}\sin(v)\right.\\ &&+ \frac{28}{29}v^{10}+\left( -\frac{17565}{116}-\frac{28}{29}s^{2} \right)v^{8}+\left( \frac{402437}{232}+\frac{17445}{58}s^{2}\right)v^{6}\\ &&+ \left( -\frac{234531}{116}s^{2}-\frac{951375}{464}-\frac{17325}{116}s^{4} \right)v^{4}+\left( \frac{104625}{ 232}s^{4}+\frac{50625}{116}+\frac {469125}{232}s^{2}\right)v^{2}\\ &&- \left.\frac{124875}{464}s^{2}\left( s^{2}+\frac{60}{37}\right)\right)v \left( \cos(v)\right)^{5}+\left( \left( -64v^{12}+ \left( 128s^{2}+960\right)v^{10}\right.\right.\\ &&+ \left( -~64s^{4}-960s^{2}-335925\right)v^{8}+\left( 495900s^{2}+915825\right)v^{6}\\ \end{array} $$
$$ \begin{array}{@{}rcl@{}} &&+ \left( -159975s^{4}-985950s^{2}-452250\right)v^{4}+\left( 172125s^{4}+479250s^{2}+20250\right)v^{2}\\ &&- \left.27000s^{4}-20250s^{2}\right)\sin(v)-16(s+v)(s-v)\left( 55v^{6}+\left( -56s^{2}+382\right)v^{4}\right.\\ &&+ \left.\left.\left( s^{4}+\frac{1005}{2}+\frac{21}{2}s^{2}\right)v^{2}+72+\frac {171}{2}s^{2}+3/2s^{4}\right)v^{5}\right)\left( \cos(v)\right)^{4}\\ &&+ 24\left( (s+v)(s-v)\left( -\frac{112}{3}v^{4}+\left( 11+\frac{361}{3}s^{2} \right)v^{2}+s^{4}+137s^{2}-12\right)v^{5}\sin(v)\right.\\ &&+ \frac{484}{3}v^{10}+ \left( -\frac{700}{3}s^{2}-{\frac {20863}{8}} \right) {v}^{8}+ \left( 72 {s}^{4}+{\frac {611387}{24}}+{\frac {19823}{4}} {s}^{2} \right) {v}^{6}\\ &&+ \left( -{\frac {136377}{4}} {s}^{2}-{\frac {18783}{ 8}} {s}^{4}-{\frac {220625}{8}} \right) {v}^{4}\\ &&+ \left.\left( {\frac { 101625}{8}} {s}^{4}+{\frac {109125}{4}} {s}^{2}+3375 \right) {v}^{2} -3375 {s}^{2}-{\frac {59625}{8}} {s}^{4} \right) v \left( \cos(v)\right)^{3}\\ &&+ \left( \left( 832 {v}^{12}+ \left( -1664 {s}^{2}-6624 \right) {v}^{10}+ \left( 832 {s}^{4}+7776 {s}^{2 }+86301 \right) {v}^{8}\right.\right.\\ &&+ \left( -1152 {s}^{4}-234801 {s}^{2}-341775 \right) {v}^{6}+ \left( 148500 {s}^{4}+437400 {s}^{2}+118125 \right) {v}^{4}\\ &&+ \left.\left( -185625 {s}^{4}-151875 {s}^{2}+10125 \right) {v}^{2}+33750 {s}^{4}-10125 {s}^{2} \right) \sin \left( v \right) \\ &&- 88 \left( s+v \right) \left( s-v \right) {v}^{5} \left( - {\frac {34}{11}} {v}^{6}+ \left( {\frac {23}{11}} {s}^{2}-{\frac { 667}{11}} \right) {v}^{4}\right.\\ &&+ \left.\left.\left( {s}^{4}-{\frac {903}{11}}+{\frac { 474}{11}} {s}^{2} \right) {v}^{2}+{\frac {36}{11}}-{\frac {225}{11}} {s}^{2}-{\frac {15}{11}} {s}^{4} \right) \right) \left( \cos(v)\right)^{2}\\ &&+ 120 v \left( \left( s+v \right) \left( s-v \right) \left( {\frac {186}{5}} {v}^{4}+ \left( -{\frac {251}{5}}-7 {s}^{2} \right) {v}^{2}+{s}^{4}+{\frac {156}{5}}-41 {s}^{2} \right) {v}^{5}\sin \left( v \right)\right.\\ &&- {\frac {536}{15}} {v}^{10}+ \left( {\frac {824}{15}} {s}^{2}-{\frac {191}{2}} \right) {v}^{8}+ \left( -{\frac {96}{5}} {s}^{4}-{\frac {4299}{10}}+{\frac {1139}{5}} {s}^{2} \right) {v}^{6}\\ &&+ \left( {\frac {5587}{5}} {s}^{2}-{\frac { 1323}{10}} {s}^{4}+{\frac {2025}{4}} \right) {v}^{4}+ \left( -{\frac {1775}{2}} {s}^{4}-{\frac {1875}{4}} {s}^{2}+{\frac {225}{2}} \right) {v}^{2}\\ &&- \left.{\frac {225}{2}} {s}^{2}+{\frac {1125}{2}} {s}^{4} \right) \cos(v) +32(s+v)(s-v)\left( \left( 24 {v}^{10}+ \left( -24 {s}^{2}-60 \right) {v}^{8}\right.\right.\\ &&+ \left( 72 {s}^{2}-{\frac {597}{2}} \right) {v}^{6}+ \left( - {\frac {1275}{16}}+{\frac {1275}{8}} {s}^{2} \right) {v}^{4}\\ &&+ \left.\left( {\frac {3375}{4}} {s}^{2}-{\frac {1125}{2}} \right) {v}^{2}-{\frac { 3375}{16}} {s}^{2}+{\frac {3375}{32}} \right) \sin \left( v \right) \\ &&+ \left.\left( 34 {v}^{6}+ \left( -35 {s}^{2}-107 \right) {v}^{4}+ \left( { s}^{4}+134 {s}^{2}-48 \right) {v}^{2}-3 {s}^{4}-15 {s}^{2}+9 \right) {v}^{5} \right), \end{array} $$
$$ \begin{array}{@{}rcl@{}} A_{10}&=&\left( s+v \right) \left( -{\frac {2925}{4}} \left( -{v}^{6} + \left( -{\frac {17}{39}}+{s}^{2} \right) {v}^{4} + \left( {\frac {265}{26}}-{\frac {175}{39}} {s}^{2} \right) {v}^{2} - { \frac {90}{13}}+{\frac {75}{26}} {s}^{2} \right) \!v \left( \cos \left( v \right) \right)^{6}\right.\\ &&+ \left( \left( -{\frac {12825}{8}} { v}^{6}+ \left( -{\frac {38175}{8}}+{\frac {20025}{8}} {s}^{2} \right) {v}^{4}\right.\right.\\ &&+ \left.\left( {\frac {32625}{4}}-{\frac {23625}{8}} {s}^{2 } \right) {v}^{2}-{\frac {3375}{2}}+{\frac {3375}{4}} {s}^{2} \right) \sin \left( v \right)\\ &&+ \left.12 {v}^{11}+ \left( 9-12 {s}^{2} \right) {v}^{9}+ \left( 51-41 {s}^{2} \right) {v}^{7}+ \left( -72 + 33 {s}^{2} \right) {v}^{5} \right) \left( \cos \left( v \right) \right)^{5}\\ \end{array} $$
$$ \begin{array}{@{}rcl@{}} &&+ \left( \left( 32 {v}^{9}+ \left( 90-32 {s}^{2} \right) {v}^{7}+ \left( 180-90 {s}^{2} \right) {v}^{5} \right) \sin \left( v \right)\right.\\ &&+ {v}^{10}+ \left( -2 {s}^{2}+7/2 \right) {v}^{8}+ \left( {s}^{4}-{\frac {1353}{16}}-21 {s}^{2} \right) {v}^{6}+ \left( -{\frac {242649}{16}}+3/2 {s}^{4}+{\frac {1737}{16}} {s}^{2} \right) {v}^{4}\\ &&+ \left.\left( -{\frac {57375}{16}} {s}^{2}+{\frac {941625} {32}} \right) {v}^{2}-{\frac {84375}{8}}+{\frac {97875}{32}} {s}^{2} \right) v \left( \cos \left( v \right) \right)^{4}\\ &&+ \left( \left( 5/2 {v}^{10}+ \left( 6-{s}^{2} \right) {v}^{8}+ \left( -{\frac { 153477}{32}}+18 {s}^{2}-3/2 {s}^{4} \right) {v}^{6}+ \left( {\frac { 796125}{32}}-{\frac {34875}{32}} {s}^{2} \right) {v}^{4}\right.\right.\\ &&+ \left.\left( -{ \frac {298125}{16}}+{\frac {70875}{32}} {s}^{2} \right) {v}^{2}-{ \frac {16875}{16}} {s}^{2}+{\frac {16875}{8}} \right) \sin \left( v \right)\\ && + \left.12 {v}^{11}+ \left( 151-12 {s}^{2} \right) {v}^{9}+ \left( 27 + 121 {s}^{2} \right) {v}^{7}+ \left( -39 {s}^{2}+108 \right) {v}^{5} \right) \left( \cos \left( v \right) \right)^{3}\\ &&+ 11/2 v \left( -{\frac {128}{11}} \left( 5/4 {v}^{4}+ \left( {s}^{2 }+{\frac {51}{32}} \right) {v}^{2}+{\frac {27}{8}}-{\frac {69}{32}} { s}^{2} \right) {v}^{5}\sin \left( v \right)\right.\\ &&+ {v}^{10}+ \left( -{\frac {7}{11}}-2 {s}^{2} \right) {v}^{8}+ \left( -{\frac {5739}{16}}+{s}^{4 }+{\frac {102}{11}} {s}^{2} \right) {v}^{6}\\ &&+ \left( -{\frac {15}{11}} {s}^{4}+{\frac {368523}{176}}+{\frac {56601}{176}} {s}^{2} \right) {v}^{4}+ \left( -{\frac {34875}{176}} {s}^{2}-{\frac {664875}{176}} \right) {v}^{2}\\ &&- \left.{\frac {23625}{176}} {s}^{2}+{\frac {23625}{22}} \right) \left( \cos \left( v \right) \right)^{2}+ \left( \left( - {\frac {59}{2}} {v}^{10}+ \left( -138 + 37 {s}^{2} \right) {v}^{8}\right.\right.\\ &&+ \left( {\frac {2691}{2}}-54 {s}^{2}-15/2 {s}^{4} \right) {v}^{6}+ \left( -{\frac {4725}{2}} {s}^{2}-{\frac {224925}{32}} \right) {v}^{ 4}\\ &&+ \left.\left( {\frac {106875}{16}}+{\frac {23625}{32}} {s}^{2} \right) { v}^{2}-{\frac {3375}{8}}+{\frac {3375}{16}} {s}^{2} \right) \sin \left( v \right)\\ && - \left.51 {v}^{11}+ \left( 51 {s}^{2}-37 \right) {v}^{9} + \left( -42-107 {s}^{2} \right) {v}^{7}+ \left( -36+6 {s}^{2} \right) {v}^{5} \right) \cos \left( v \right) \\ &&- 2 \left( -3 {v}^{5} \left( -13 {v}^{4}+ \left( 45+{s}^{2} \right) {v}^{2}-6+{s}^{2} \right) \sin \left( v \right) +{v}^{10}+ \left( 21-2 {s}^{2} \right) {v}^{8}\right.\\ &&+ \left( -{\frac {2727}{16}}+6 {s}^{2}+{s}^{4} \right) {v}^{6}+ \left( -3 {s}^{4}+{\frac {1575}{16}} {s}^{2}+{ \frac {4575}{16}} \right) {v}^{4}\\ &&+ \left.\left.\left( -{\frac {8625}{16}} {s}^{2} -{\frac {21375}{32}} \right) {v}^{2}+{\frac {3375}{32}} {s}^{2}+{ \frac {3375}{16}} \right) v \right) \left( s-v \right), \end{array} $$
$$ \begin{array}{@{}rcl@{}} A_{20}&=&\left( \left( -~{\frac {3375}{2}} {v}^{3}+{\frac {3375}{2}} v-2250 {v}^{5} \right) \left( \cos \left( v \right) \right)^{5}\right.\\ &&+ \left( \left( {\frac {7875}{4}} {v}^{2}-{\frac {4275} {4}} {v}^{6}-{\frac {975}{2}} {v}^{4}-{\frac {3375}{4}} \right) \sin \left( v \right)\right.\\ &&+ \left.{v}^{5} \!\left( - ~2 {v}^{6} + \left( {s}^{2} + 24 \right) {v}^{4} + \left( {\frac {267}{2}}+{s}^{4}+1/2 {s}^{2} \right) {v}^{2}+3/2 {s}^{4}-36-3/2 {s}^{2} \right) \right) \left( \cos \left( v \right) \right)^{4}\\ &&- 3/2 \left( {v}^{5} \left( 10 {v}^{4}+ \left( 21+{s}^{2} \right) {v}^{2}+{s}^{4}-84-{s}^ {2} \right) \sin \left( v \right)\right.\\ && + \left.4/3 {v}^{8}+2250+4 {v}^{6}-6750 {v}^{2}+5238 {v}^{4} \right) v \left( \cos \left( v \right) \right)^{3}\\ &&+ \left( \left( -{\frac {86625}{16}} {v}^{2}-6 {v}^{8}+{\frac { 16875}{16}}+{\frac {101625}{8}} {v}^{4}-{\frac {77751}{16}} {v}^{6} \right) \sin \left( v \right)\right.\\ \end{array} $$
$$ \begin{array}{@{}rcl@{}} &&+\!\left.11/2 \left( \!-2 {v}^{6} + \left( {s}^{2} + {\frac {217}{11}} \right) {v}^{4} + \left( -{\frac {26}{11}} {s}^{2} + {s}^{4}-45 \right) {v}^{2} - {\frac {15}{11}} {s}^{4} + {\frac {108}{ 11}}+{\frac {15}{11}} {s}^{2} \right) {v}^{5} \right) \left( \cos \left( v \right) \right)^{2}\\ &&- 15/2 \left( {v}^{5} \left( 10 {v}^{4}+ \left( {s}^{2}-{\frac {83}{5}} \right) {v}^{2}-{s}^{2}+{\frac {108 }{5}}+{s}^{4} \right) \sin \left( v \right)\right.\\ &&+ \left.{\frac {3825}{4}} {v}^{2 }+8/5 {v}^{6}+{\frac {56}{15}} {v}^{8}-{\frac {4488}{5}} {v}^{4}- 225 \right) v\cos \left( v \right) \\ &&+ \left( {\frac {4113}{4}} {v}^{6} +{\frac {12375}{8}} {v}^{2}-{\frac {30225}{8}} {v}^{4}-{\frac {3375} {16}}-24 {v}^{8} \right) \sin \left( v \right)\\ && - \left.2 \left( -2 {v}^{6 }+ \left( {s}^{2}+31 \right) {v}^{4}+ \left( {s}^{4}-4 {s}^{2}-66 \right) {v}^{2}-3 {s}^{4}+3 {s}^{2}+9 \right) {v}^{5} \right) \left( s+v \right) \left( s-v \right), \end{array} $$

and

$$ \begin{array}{@{}rcl@{}} A&=&v^{5}(2\cos(v)^{4}v^{2}-3\cos(v)^{3}\sin(v)v+3\cos(v)^{4}+11\cos(v)^{2}v^{2}\\ &&-15\cos(v)\sin(v)v-15\cos(v)^{2}-4v^{2}+12). \end{array} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalsaraei, M.M., Shokri, A. An explicit six-step singularly P-stable Obrechkoff method for the numerical solution of second-order oscillatory initial value problems. Numer Algor 84, 871–886 (2020). https://doi.org/10.1007/s11075-019-00784-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-019-00784-w

Keywords

Mathematics Subject Classification (2010)

Navigation