Skip to main content
Log in

Chebyshev-Legendre spectral method and inverse problem analysis for the space fractional Benjamin-Bona-Mahony equation

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In the paper, a space fractional Benjamin-Bona-Mahony (BBM) equation is proposed. For the direct problem, we develop the Chebyshev-Legendre spectral scheme for the proposed equation. The given approach is based on Legendre Galerkin formulation while the Chebyshev-Gauss-Lobatto (CGL) nodes are used in the computation. By using the presented method, the computational complexity is reduced and both accuracy and efficiency are achieved compared with the Legendre spectral method. Stability and convergence analysis of the numerical method are proven. For the inverse problem, the Bayesian method is developed to estimate some relevant parameters based on the spectral format of the direct problem. The convergence analysis on the Kullback-Leibler distance between the true posterior distribution and the approximation is derived. Some numerical experiments are included to demonstrate the theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aceto, L., Novati, P.: Rational approximation to the fractional Laplacian operator in reaction-diffusion problems. SIAM J. Sci. Comput. 39, 214–228 (2017)

    Article  MathSciNet  Google Scholar 

  2. Alves, C., Mamud, R., Martins, N., Roberty, N.: On inverse problems for characteristic sources in Helmholtz equations. Math. Probl. Eng. 2017, 2472060 (2017)

    Article  MathSciNet  Google Scholar 

  3. Benjamin, T., Bona, J., Mahony, J.: Model equations for long waves in nonlinear dispersive systems. Philos. Trans. Roy. Soc. London Ser. A 272, 47–78 (1972)

    Article  MathSciNet  Google Scholar 

  4. Castruccio, S., Bonaventura, L., Sangalli, L.: A Bayesian approach to spatial prediction with flexible variogram models. J. Agric. Biol. Environ. Stat. 17, 209–227 (2012)

    Article  MathSciNet  Google Scholar 

  5. Chen, W., Sun, H., Zhang, X., Korošak, D.: Anomalous diffusion modeling by fractal and fractional derivatives. Comput. Math. Appl. 59, 1754–1758 (2010)

    Article  MathSciNet  Google Scholar 

  6. Chen, W., Wang, S.: A power penalty method for a 2D fractional partial differential linear complementarity problem governing two-asset American option pricing. Appl. Math. Comput. 305, 174–187 (2017)

    MathSciNet  MATH  Google Scholar 

  7. Cheng, K., Wang, C., Wise, S., Yue, X.: A second-order, weakly energy-stable pseudo-spectral scheme for the Cahn-Hilliard equation and its solution by the homogeneous linear iteration method. J. Sci. Comput. 69, 1083–1114 (2016)

    Article  MathSciNet  Google Scholar 

  8. Craiem, D., Rojo, F., Atienza, J., Armentano, R., Guinea, G.: Fractional-order viscoelasticity applied to describe uniaxial stress relaxation of human arteries. Phys. Med. Biol. 53, 4543–4554 (2008)

    Article  Google Scholar 

  9. Dehghan, M.: Numerical solution of the three-dimensional advection-diffusion equation. Appl. Math. Comput. 150, 5–19 (2004)

    MathSciNet  MATH  Google Scholar 

  10. Ding, F., Liu, X., Ma, X.: Kalman state filtering based least squares iterative parameter estimation for observer canonical state space systems using decomposition. J. Comput. Appl. Math. 301, 135–143 (2016)

    Article  MathSciNet  Google Scholar 

  11. Don, W., Gottlieb, D.: The Chebyshev-Legendre method: implementing Legendre methods on Chebyshev points. SIAM J. Numer. Anal. 31, 1519–1534 (1994)

    Article  MathSciNet  Google Scholar 

  12. Elizalde, E., Urteaga, R., Koropecki, R., Berli, C.: Inverse problem of capillary filling. Phys. Rev. Lett. 112, 134502 (2014)

    Article  Google Scholar 

  13. Franck, I., Koutsourelakis, P.: Multimodal, high-dimensional, model-based, Bayesian inverse problems with applications in biomechanics. J. Comput. Phys. 329, 91–125 (2017)

    Article  MathSciNet  Google Scholar 

  14. Furati, K., Iyiola, O., Kirane, M.: An inverse problem for a generalized fractional diffusion. Appl. Math. Comput. 249, 24–31 (2014)

    MathSciNet  MATH  Google Scholar 

  15. Gu, X., Gao, L.: A new method for parameter estimation of edge-preserving regularization in image restoration. J. Comput. Appl. Math. 225, 478–486 (2009)

    Article  MathSciNet  Google Scholar 

  16. Huang, J., Tang, Y., Vázquez, L., Yang, J.: Two finite difference schemes for time fractional diffusion-wave equation. Numer. Algorithms 64, 707–720 (2013)

    Article  MathSciNet  Google Scholar 

  17. Kharazmi, E., Zayernouri, M., Karniadakis, G.: Petrov-galerkin and spectral collocation methods for distributed order differential equations. SIAM J. Sci. Comput. 39, A1003–A1037 (2017)

    Article  MathSciNet  Google Scholar 

  18. Lee, H., Lai, T., Chen, W., Yang, Y.: An inverse hyperbolic heat conduction problem in estimating surface heat flux of a living skin tissue. Appl. Math. Model. 37, 2630–2643 (2013)

    Article  MathSciNet  Google Scholar 

  19. Liu, P., Shi, Q., Lll, H., Voth, G.: A Bayesian statistics approach to multiscale coarse graining. J. Chem. Phys. 129, 214114 (2008)

    Article  Google Scholar 

  20. Liu, Y., Fang, Z., Li, H., He, S.: A mixed finite element method for a time-fractional fourth-order partial differential equation. Appl. Math. Comput. 243, 703–717 (2014)

    MathSciNet  MATH  Google Scholar 

  21. Liu, Y., Du, Y., Li, H., Liu, F., Wang, Y.: Some second-order 𝜃 schemes combined with finite element method for nonlinear fractional cable equation. Numer. Algorithms. https://doi.org/10.1007/s11075-018-0496-0 (2018)

  22. Liu, Z., Lü, S., Liu, F.: Fully discrete spectral methods for solving time fractional nonlinear Sine-Gordon equation with smooth and non-smooth solutions. Appl. Math. Comput. 333, 213–224 (2018)

    Article  MathSciNet  Google Scholar 

  23. Mao, Z., Karniadakis, G.: Fractional Burgers equation with nonlinear non-locality: Spectral vanishing viscosity and local discontinuous Galerkin methods. J. Comput. Phys. 336, 143–163 (2017)

    Article  MathSciNet  Google Scholar 

  24. Marzouk, Y., Xiu, D.: A stochastic collocation approach to Bayesian inference in inverse problems. Commun. Comput. Phys. 6, 826–847 (2009)

    Article  MathSciNet  Google Scholar 

  25. Mokhtary, P.: Numerical analysis of an operational Jacobi Tau method for fractional weakly singular integro-differential equations. Appl. Numer. Math. 121, 52–67 (2017)

    Article  MathSciNet  Google Scholar 

  26. Molinet, L., Saut, J., Tzvetkov, N.: Remarks on the mass constraint for KP-type equations. SIAM J. Math. Anal. 39, 627–641 (2007)

    Article  MathSciNet  Google Scholar 

  27. Podlubny, I.: Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and Some of their Applications. Academic Press, New York and London (1998)

    MATH  Google Scholar 

  28. Roop, J.: Variational solution of the fractional advection dispection equation. Ph.D. theis, Clemson University, South Carolina (2004)

  29. Shen, J., Tang, T., Wang, L.: Spectral Methods: Algorithms, Analysis and Applications. Springer Ser. Comput. Math. Springer, Heidelberg (2011)

    Book  Google Scholar 

  30. Simos, T., Tsionas, M.: Bayesian inference of the fractional Ornstein-Uhlenbeck process under a flow sampling scheme (2018)

  31. Stuart, A., Teckentrup, A.: Posterior consistency for Gaussian process approximations of Bayesian posterior distributions. Math. Comput. 87, 721–753 (2018)

    Article  MathSciNet  Google Scholar 

  32. Wang, J., Zabaras, N.: Using Bayesian statistics in the estimation of heat source in radiation. Int. J. Heat Mass Transfer 48, 15–29 (2005)

    Article  Google Scholar 

  33. Wang, J., Zabaras, N.: Hierarchical Bayesian models for inverse problems in heat conduction. Inverse Probl. 21, 183–211 (2005)

    Article  MathSciNet  Google Scholar 

  34. Wu, G., Lee, E.: Fractional variational iteration method and its application. Phys. Lett. A 374, 2506–2509 (2010)

    Article  MathSciNet  Google Scholar 

  35. Xu, L.: Application of the Newton iteration algorithm to the parameter estimation for dynamical systems. J. Comput. Appl. Math. 288, 33–43 (2015)

    Article  MathSciNet  Google Scholar 

  36. Yan, L., Guo, L.: Stochastic collocation algorithms using l1-minimization for Bayesian solution of inverse problems. SIAM J. Sci. Comput. 37, A1410–A1435 (2015)

    Article  Google Scholar 

  37. Ye, H., Liu, F., Anh, V., Turner, I.: Numerical analysis for the time distributed order and Riesz space fractional diffusions on bounded domains. IMA J. Appl. Math. 80, 531–540 (2015)

    Article  MathSciNet  Google Scholar 

  38. Yu, B., Jiang, X.: Numerical identification of the fractional derivatives in the two-dimensional fractional cable equation. J. Sci. Comput. 68, 252–272 (2016)

    Article  MathSciNet  Google Scholar 

  39. Zeng, F., Liu, F., Li, C., Burrage, K., Turner, I., Anh, V.: Crank-Nicolson ADI spectral method for the two-dimensional Riesz space fractional nonlinear reaction-diffusion equation. SIAM J. Numer. Anal. 52, 2599–2622 (2014)

    Article  MathSciNet  Google Scholar 

  40. Zeng, F., Li, C.: A new Crank-Nicolson finite element method for the time-fractional subdiffusion equation. Appl. Numer. Math. 121, 82–95 (2017)

    Article  MathSciNet  Google Scholar 

  41. Zhao, T., Wu, Y., Ma, H.: Error analysis of Chebyshev-Legendre pseudo-spectral method for a class of nonclassical parabolic equation. J. Sci. Comput. 52, 588–602 (2012)

    Article  MathSciNet  Google Scholar 

  42. Zhuang, Q., Shen, J., Xu, C.: A coupled Legendre-Laguerre spectral-element method for the Navier-Stokes equations in unbounded domains. J. Sci. Comput. 42, 1–22 (2010)

    Article  MathSciNet  Google Scholar 

  43. Zhuang, P., Liu, F., Turner, I., Anh, V.: Galerkin finite element method and error analysis for the fractional cable equation. Numer. Algorithms 72, 447–466 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Funding

This work has been supported by the National Natural Science Foundation of China (Grants Nos. 11771254, 11672163), the Natural Science Foundation of Shandong Province (Grant No. ZR2017MA030), and the Fundamental Research Funds for the Central Universities (Grant No. 2019ZRJC002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyun Jiang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Jiang, X. & Zheng, R. Chebyshev-Legendre spectral method and inverse problem analysis for the space fractional Benjamin-Bona-Mahony equation. Numer Algor 84, 513–536 (2020). https://doi.org/10.1007/s11075-019-00767-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-019-00767-x

Keywords

Navigation