Skip to main content
Log in

An adaptive weak continuous Euler-Maruyama method for stochastic delay differential equations

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

An Erratum to this article was published on 18 February 2015

Abstract

In this paper, an adaptive weak scheme for stochastic delay differential equations (SDDEs) based on the weak continuous Euler-Maruyama method which is a special member of the family of continuous weak Runge-Kutta schemes is introduced. The framework of the analysis of the global error is to embed the SDDE into a series of interrelated SDEs each defined on a separate interval in order to consider the error of SDE method and that of the interpolation. We perform the error estimation in a priori form based on the rooted tree theory of Rößler and then analyze the global error of the scheme by obtaining a computable expression of the principal terms of that which is useful for controlling it which contains both the numerical and statistical errors. Adopting the idea presented in Szepessy et al. (Commun. Pure Appl. Math. 54:1169–1214, 2001), we determine the optimal discretization points using the deterministic time-step mechanism and also the necessary number of realizations based on the standard deviation of the approximate solution. We show that this technique leads to increased accuracy of the expected value of the required functionals. By presenting some numerical experiments, the effectiveness of utilizing the adaptive idea with holding the tolerance proportionality property is illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bahar, A., Mao, X.: Stochastic delay population dynamics. Int. J. Pure Appl. Math. 11(4), 377–399 (2004)

    MATH  MathSciNet  Google Scholar 

  2. Baker, C.T.H., Buckwar, E.: Numerical analysis of explicit one-step methods for stochastic delay diffrential equations. LMS J. Comput. Math. 3, 315–335 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bellen, A., Zennaro, M.: Numerical Methods for Delay Diffrential Equations. Oxford University Press (2003)

  4. Beuter, A., Vasilakos, K.: Effects of noise on a delayed visual feedback system. J. Theor. Biol. 165, 389–407 (1993)

    Article  Google Scholar 

  5. Buckwar, E., Mohammed, S.E.A., Kuske, R., Shardlow, T.: Weak convergence of the Euler scheme for stochastic differential delay equations. LMS J. Comput. Math. 11, 60–99 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  6. Buckwar, E., Shardlow, T.: Weak approximation of stochastic differential delay equations. IMA J. Numer. Anal. 25, 57–86 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. Corwin, S.P., Thompson, S.: Error estimation and step size control for delay differential equation solvers based on continuously embedded Runge-Kutta-Sarafyan methods. Comput. Math. Appl. 31(6), 1–11 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  8. Debrabant, K., Rössler, A.: Classification of stochastic Runge-Kutta methods for the weak approximation of stochastic differential equations. Math. Comput. Simul. 77, 408–420 (2008)

    Article  MATH  Google Scholar 

  9. Debrabant, K., Rössler, A.: Continuous weak approximation for stochastic differential equations. J. Comput. Appl. Math. 214, 259–273 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  10. Durrett, R.: Probability: Theory and Example. Duxbury Press, Belmont, Calif (1964)

    Google Scholar 

  11. Filippi, S., Buchacker, U.: Stepsize control for delay differential equations using a pair of formulae. J. Comput. Appl. Math. 26, 339–343 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  12. Foroush Bastani, A., Hosseini, S.M.: A new adaptive Runge-Kutta method for stochastic differential equations. J. Comput. Appl. Math. 206, 631–644 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Gaines, J.G., Lyons, T.J.: Variable step size control in the numerical solution of stochastic differential equations. SIAM J. Appl. Math. 57(5), 1455–1484 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  14. Hu, Y., Mohammed, S.E.A., Yan, F.: Discrete-time approximation of stochastic delay equations: The Milstein scheme. Ann. Probab. 32, 265–314 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kazmerchuk, Y., Swishchuk, A., Wu, J.: The pricing of options for securities markets with delayed response. Math. Comput. Simul. 75(3-4), 69–79 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kemajou, E.: A Stochastic Delay Model for Pricing Corporate Liabilities, Ph.D Thesis. Southern Illinois University, Carbondale (2012)

    Google Scholar 

  17. Kpper, D., Lehn, J., Rössler, A.: A step size control algorithm for the weak approximation of stochastic differential equations. Numer. Algorithm. 44, 335–346 (2007)

    Article  Google Scholar 

  18. Küchler, U., Platen, E.: Strong discrete time approximation of stochastic diffrential equations with time delay. Math. Comput. Simul. 54, 189–205 (2000)

    Article  Google Scholar 

  19. Küchler, U., Platen, E.: Weak discrete time approximation of stochastic diffrential equations with time delay. Math. Comput. Simul. 59, 497–507 (2002)

    Article  MATH  Google Scholar 

  20. Kushner, H.: Numerical Methods for Controlled Stochastic Delay Systems. Birkhauser (2008)

  21. Lamba, H., Mattingly, J.C., Stuart, A.M.: An adaptive Euler-Maruyama scheme for SDEs: convergence and stability. IMA J. Numer. Anal. 27, 479–506 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  22. Liang, C., Lord, G.: Stochastic Methods in Neuroscience. Oxford University Press, New York (2010)

    Google Scholar 

  23. Mao, X: Numerical solutions of stochastic functional diffrential equations. LMS J. Comput. Math. 6, 141–161 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  24. Mao, X. : Stochastic Differential Equations and Applications. Horwood Publishing, Chichester, UK (1997)

    MATH  Google Scholar 

  25. Mauthner, S.: Stepsize control in the numerical solution of stochastic differential equations. J. Comput. Appl. Math. 100, 93–109 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  26. Milstein, G.N.: Numerical Integration of Stochastic Differential Equations. Kluwer Academic Publishers, Dordrecht (1995)

    Book  Google Scholar 

  27. Mohammed, S.E.A., Scheutzow, M.K.R.: Lyapunov exponents of linear stochastic functional differential equations, Part II: Examples and case studies. Ann. Probab. 25(3), 1210–1240 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  28. Moon, K.S., Szepessy, A., Tempone, R., Zouraris, G.E.: Convergence rates for adaptive weak approximation of stochastic differential equations. Stoch. Anal. Appl. 23, 511–558 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  29. Oberle, H.J., Pesch, H.J.: Numerical treatment of delay differential equations by Hermit interpolation. Numerische Mathematik 37, 235–255 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  30. Rössler, A.: Runge-Kutta Metods for the numerical Solution of Stochastic Differential Equation, Ph.D. Thesis. Darmastadt University of Technology, Shaker Verlag, Aachen (2003)

    Google Scholar 

  31. Szepessy, A., Tempone, R., Zouraris, G.E.: Adaptive weak approximation of stochastic differential equations. Commun. Pure Appl. Math. 54, 1169–1214 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  32. Talay, D., Tubaro, L.: Expansion of the global error for numerical schemes solving stochastic differential equations. Stoch. Anal. Appl. 8(4), 483–509 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  33. Thompson, S: Stepsize control for delay differential equations using continuously imbedded Runge-Kutta methods of Sarafyan. J. Comput. Appl. Math. 31, 267–275 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  34. Tian, T., Burrage, K., Burrage, P.M., Carletti, M.: Stochastic delay differential equations for genetic regulatory networks. J. Comput. Appl. Math. 205, 696–707 (2007)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Akhtari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akhtari, B., Babolian, E. & Foroush Bastani, A. An adaptive weak continuous Euler-Maruyama method for stochastic delay differential equations. Numer Algor 69, 29–57 (2015). https://doi.org/10.1007/s11075-014-9880-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-014-9880-6

Keywords

Navigation