Skip to main content
Log in

Efficient application of nonlinear stationary operators in adaptive wavelet methods—the isotropic case

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

This paper deals with the efficient application of nonlinear operators in wavelet coordinates using a representation based on local polynomials. In the framework of adaptive wavelet methods for solving, e.g., PDEs or eigenvalue problems, one has to apply the operator to a vector on a target wavelet index set. The central task is to apply the operator as fast as possible in order to obtain an efficient overall scheme. This work presents a new approach of dealing with this problem. The basic ideas together with an implementation for a specific PDE on an L-shaped domain were presented firstly in [38]. Considering the approximation of a function based on wavelets consisting of piecewise polynomials, e.g., spline wavelets, one can represent each wavelet using local polynomials on cells of the underlying domain. Because of the multilevel structure of the wavelet spaces, the generated polynomial usually consists of many overlapping pieces living on different spatial levels. Since nonlinear operators, by definition, cannot generally be applied to a linear decomposition exactly, a locally unique representation is sought. The application of the operator to these polynomials now has a simple structure due to the locality of the polynomials and many operators can be applied exactly to the local polynomials. From these results, the values of the target wavelet index set can be reconstructed. It is shown that all these steps can be applied in optimal linear complexity. The purpose of the presented paper is to provide a self-consistent development of this operator application independent of the particular PDE, operator, underlying domain, types of wavelets, or space dimension, thereby extending and modifying the previous ideas from [38].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R., Fournier, J.: Sobolev Spaces, 2nd edn. Academic press (2003)

  2. Aubin, J.P.: Applied Functional Analysis, 2nd edn. Wiley (2000)

  3. Barinka, A.: Fast computation tools for adaptive wavelet schemes. Ph.D. thesis, RWTH Aachen (2005)

  4. Barinka, A., Barsch, T., Charton, P., Cohen, A., Dahlke, S., Dahmen, W., Urban, K.: Adaptive wavelet schemes for elliptic problems—implementation and numerical experiments. SIAM J. Sci. Comput. 23(3), 910–939 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Barinka, A., Dahmen, W., Schneider, R.: Adaptive application of operators in standard representation. Adv. Comput. Math. 24(1–4), 5–34 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Binev, P., DeVore, R.: Fast computation in adaptive tree approximation. Numer. Math. 97(2), 193–217 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bittner, K., Urban, K.: Adaptive wavelet methods using semiorthogonal spline wavelets: sparse evaluation of nonlinear functions. Appl. Comput. Harmon. Anal. 24(1), 94–119 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Braess, D.: Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics, 3rd edn. Cambridge University Press (2007)

  9. Chegini, N., Stevenson, R.: Adaptive wavelet schemes for parabolic problems: sparse matrices and numerical results. SIAM J. Numer. Anal. 49(1), 182–212 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cohen, A.: Numerical Analysis of Wavelet Methods. Studies in Mathematics and its Applications 32, Elsevier (2003)

  11. Cohen, A., Dahmen, W., DeVore, R.: Adaptive wavelet methods for elliptic operator equations: convergence rates. Math. Comput. 70(233), 27–75 (2001)

    MathSciNet  MATH  Google Scholar 

  12. Cohen, A., Dahmen, W., DeVore, R.: Adaptive wavelet methods ii—beyond the elliptic case. Found. Comput. Math. 2(3), 203–246 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cohen, A., Dahmen, W., DeVore, R.: Adaptive wavelet schemes for nonlinear variational problems. SIAM J. Numer. Anal. 41(5), 1785–1823 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cohen, A., Dahmen, W., DeVore, R.: Sparse evaluation of compositions of functions using multiscale expansions. SIAM J. Math. Anal. 35(2), 279–303 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dahlke, S., Dahmen, W., Urban, K.: Adaptive wavelet methods for saddle point problems—optimal convergence rates. IGPM Report, RWTH Aachen 2(2), 1003–1022 (2002)

    Google Scholar 

  16. Dahmen, W.: Wavelet and multiscale methods for operator equations. Acta Numer. 6, 55–228 (1997)

    Article  MathSciNet  Google Scholar 

  17. Dahmen, W., Kunoth, A.: Multilevel preconditioning. Numer. Math. 63(1), 315–344 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dahmen, W., Kunoth, A.: Adaptive wavelet methods for linear—quadratic elliptic control problems: convergence rates. SIAM J. Control Optim. 43(5), 1640–1675 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dahmen, W., Kunoth, A., Urban, K.: Biorthogonal spline-wavelets on the interval—stability and moment conditions. Appl. Comput. Harmon. Anal. 6(2), 132–196 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dahmen, W., Schneider, R., Xu, Y.: Nonlinear functions of wavelet expansions—adaptive reconstruction and fast evaluation. Numer. Math. 86(1), 49–101 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Dahmen, W., Urban, K., Vorloeper, J.: Adaptive wavelet methods: basic concepts and application to the Stokes problem. In: Zhou, D.X. (ed.) Wavelet Analysis, pp. 39–80. World Scientific (2002)

  22. Dautray, R., Lions, J.L.: Mathematical Analysis and Numerical Methods for Science and Technology. Functional and Variational Methods, vol. 2, 2nd edn. Springer (1988)

  23. Gantumur, T., Harbrecht, H., Stevenson, R.: An optimal adaptive wavelet method without coarsening of the iterands. Math. Comput. 76(258), 615–629 (2006)

    MathSciNet  Google Scholar 

  24. Garau, E., Morin, P., Zuppa, C.: Convergence of adaptive finite element methods for eigenvalue problems. Math. Models Methods Appl. Sci. 19(5), 721–747 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Giani, S., Graham, I.: A convergent adaptive method for elliptic eigenvalue problems. SIAM J. Numer. 47(2), 1067–1091 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Gunzburger, M., Kunoth, A.: Space-time adaptive wavelet methods for control problems constrained by parabolic evolution equations. SIAM J. Control. Optim. 49(3), 1150–1170 (2011). doi:10.1137/100806382

    Article  MathSciNet  MATH  Google Scholar 

  27. Hackbusch, W.: Theorie und Numerik elliptischer Differentialgleichungen, 2nd edn. Teubner Studienbücher (1986)

  28. Kappei, J.: Adaptive frame methods for nonlinear elliptic problems. Appl. Anal. 90(8), 1323–1353 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Mehrmann, V., Miedlar, A.: Adaptive computation of smallest eigenvalues of self-adjoint elliptic partial differential equations. Numer. Linear Algebra 18(3), 387–409 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Mollet, C.: Excitonic Eigenstates in Disordered Semiconductor Quantum Wires: Adaptive Computation of Eigenvalues for the Electronic Schrödinger Equation Based on Wavelets. Shaker–Verlag (2011). doi:10.2370/OND000000000098

  31. Mollet, C., Kunoth, A., Meier, T.: Excitonic eigenstates of disordered semiconductor quantum wires: adaptive wavelet computation of eigenvalues for the electron-hole Schrödinger equation. IMA Preprint #2381, University of Minesota (2011, submitted for publication)

  32. Nochetto, R.H., Siebert, K.G., Veeser, A.: Theory of adaptive finite element methods: an introduction. In: DeVore, R., Kunoth, A. (eds.) Multiscale, Nonlinear and Adaptive Approximation, pp. 409–542. Springer Berlin Heidelberg (2009)

    Chapter  Google Scholar 

  33. Pabel, R.: Adaptive wavelet methods for pde constrained nonlinear elliptic control problems. Ph.D. thesis, Institut für Mathematik, Universität Paderborn (2013, to appear)

  34. Rohwedder, T., Schneider, R., Zeiser, A.: Perturbed preconditioned inverse iteration for operator eigenvalue problems with application to adaptive wavelet discretization. Adv. Comput. Math. 34(1), 43–66 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. Schwab, C., Stevenson, R.: Fast evaluation of nonlinear functionals of tensor product wavelet expansions. Numerische Mathematik, pp. 1–22. doi:10.1007/s00211-011-0397-9

  36. Schwab, C., Stevenson, R.: Space-time adaptive wavelet methods for parabolic evolution problems. Math. Comput. 78(267), 1293–1318 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  37. Urban, K.: Wavelet Methods for Elliptic Partial Differential Equations. Oxford University Press (2009)

  38. Vorloeper, J.: Adaptive Wavelet Methoden für Operator Gleichungen—Quantitative Analyse und Softwarekonzepte (in German). VDI–Verlag (2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Mollet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mollet, C., Pabel, R. Efficient application of nonlinear stationary operators in adaptive wavelet methods—the isotropic case. Numer Algor 63, 615–643 (2013). https://doi.org/10.1007/s11075-012-9645-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-012-9645-z

Keywords

Mathematics Subject Classifications (2010)

Navigation