Skip to main content
Log in

Mittag-Leffler stability of random-order fractional nonlinear uncertain dynamic systems with impulsive effects

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper investigates the Mittag-Leffler stability (MLS) of nonlinear uncertain dynamic systems (NUDSs) with impulsive effects involving the random-order fractional derivative (ROFD) under the fuzzy concept. The major tool used in this paper is Lyapunov’s direct method, which brings high efficiency in surveying the stability theory of dynamic systems. Some algebraic inequalities on the ROFD are established, which is necessary to study the MLS of NUDSs. Examples and simulations are also provided to demonstrate the effectiveness of the derived theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Acay, B., Bas, E., Abdeljawad, T.: Fractional economic models based on market equilibrium in the frame of different type kernels. Chaos, Solitons & Fractals 130, 109438 (2020)

    Article  MathSciNet  Google Scholar 

  2. Aghababa, M. P.: A Lyapunov-based control scheme for robust stabilization of fractional chaotic systems. Nonlinear Dynamics, 78(3), 2129–2140 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aghababa, M. P.: Stabilization of a class of fractional-order chaotic systems using a non-smooth control methodology. Nonlinear Dynamics, 89(2), 1357–1370 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Aguila-Camacho, N., Duarte-Mermoud, M. A., Gallegos, J. A.: Lyapunov functions for fractional order systems. Communications in Nonlinear Science and Numerical Simulation, 19(9), 2951–2957 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. An, T. V., Phu, N. D., Hoa, N. V.: A survey on non-instantaneous impulsive fuzzy differential equations involving the generalized Caputo fractional derivative in the short memory case. Fuzzy Sets and Systems, 443, 160–197 (2022)

    Article  MathSciNet  Google Scholar 

  6. An, T. V., Hoa, N. V.: The stability of the controlled problem of fuzzy dynamic systems involving the random-order Caputo fractional derivative. Information Sciences, 612, 427–452 (2022)

    Article  Google Scholar 

  7. Baleanu, D., Wu, G.C.: Some further results of the laplace transform for variable-order fractional difference equations. Fractional Calculus Appl. Anal. 22(6), 1641–1654 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bede, B., Stefanini, L.: Generalized differentiability of fuzzy-valued functions. Fuzzy Sets and Systems, 230, 119–141 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. De Staelen, R.H., Hendy, A.S.: Numerically pricing double barrier options in a time-fractional Black-Scholes model. Comput Math. Appl 74(6), 1166–1175 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dong, N.P., Long, H.V., Khastan, A.: Optimal control of a fractional order model for granular SEIR epidemic with uncertainty. Commun. Nonlinear Sci. Numer. Simul. 88, 105312 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  11. Duarte-Mermoud, M. A., Aguila-Camacho, N., Gallegos, J. A., Castro-Linares, R.: Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems. Communications in Nonlinear Science and Numerical Simulation, 22(1–3), 650–659 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Duc, T.M., Van Hoa, N.: Stabilization of impulsive fractional-order dynamic systems involving the Caputo fractional derivative of variable-order via a linear feedback controller. Chaos, Solitons & Fractals 153, 111525 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fečkan, M., Wang, J. R.: Periodic impulsive fractional differential equations. Advances in Nonlinear Analysis, 8(1), 482–496 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  14. Giusti, A.: A comment on some new definitions of fractional derivative. Nonlinear Dynamics, 93(3), 1757–1763 (2018)

    Article  MATH  Google Scholar 

  15. Huang, S., Wang, B.: Stability and stabilization of a class of fractional-order nonlinear systems for \(0<\alpha <2\). Nonlinear Dynamics, 88(2), 973–984 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jiang, J., Chen, H., Guirao, J. L., Cao, D.: Existence of the solution and stability for a class of variable fractional order differential systems. Chaos, Solitons & Fractals, 128, 269–274 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  17. Li, Y., Chen, Y., Podlubny, I.: Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability. Computers & Mathematics with Applications 59(5), 1810–1821 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Limpanukorn, N., Sa Ngiamsunthorn, P.: Existence and Ulam stability of solution to fractional order hybrid differential equations of variable order. Thai Journal of Mathematics 18(1), 453–463 (2020)

    MathSciNet  MATH  Google Scholar 

  19. Liu, S., Wu, X., Zhou, X. F., Jiang, W.: Asymptotical stability of Riemann-Liouville fractional nonlinear systems. Nonlinear Dynamics, 86(1), 65–71 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Liu, S., Jiang, W., Li, X., Zhou, X. F.: Lyapunov stability analysis of fractional nonlinear systems. Applied Mathematics Letters, 51, 13–19 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lodwick, W.A.: Constrained interval arithmetic. University of Colorado at Denver. Center for Computational Mathematics, Denver, USA (1999)

    Google Scholar 

  22. Long, H. V., Son, N. T. K., Tam, H. T. T.: The solvability of fuzzy fractional partial differential equations under Caputo gH-differentiability. Fuzzy Sets and Systems, 309, 35–63 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lorenzo, C. F., Hartley, T. T.: Variable order and distributed order fractional operators. Nonlinear dynamics, 29(1), 57–98 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lorenzo, C. F., Hartley, T. T.: Initialization, conceptualization, and application in the generalized (fractional) calculus. Critical Reviews in Biomedical Engineering, 35(6): 447-553 (2007)

    Article  Google Scholar 

  25. Lu, G., Ho, D. W.: Generalized quadratic stability for continuous-time singular systems with nonlinear perturbation. IEEE Transactions on Automatic Control, 51(5), 818–823 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lupulescu, V.: Fractional calculus for interval-valued functions. Fuzzy Sets and Systems, 265, 63–85 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Matignon, D.: Stability results for fractional differential equations with applications to control processing. In Computational engineering in systems applications 2(1), 963–968 (1996)

    Google Scholar 

  28. Martínez-Fuentes, O., Martínez-Guerra, R.: A novel Mittag-Leffler stable estimator for nonlinear fractional-order systems: A linear quadratic regulator approach. Nonlinear Dyn. 94(3), 1973–1986 (2018)

    Article  MATH  Google Scholar 

  29. Mazandarani, M., Kamyad, A. V.: Modified fractional Euler method for solving fuzzy fractional initial value problem. Communications in Nonlinear Science and Numerical Simulation, 18(1), 12–21 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Mazandarani, M., Pariz, N., Kamyad, A. V.: Granular differentiability of fuzzy-number-valued functions. IEEE Transactions on Fuzzy Systems, 26(1), 310–323 (2017)

    Article  Google Scholar 

  31. Mazandarani, M., Zhao, Y.: Fuzzy bang-bang control problem under granular differentiability. Journal of the Franklin Institute, 355(12), 4931–4951 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  32. Najariyan, M., Zhao, Y.: Fuzzy fractional quadratic regulator problem under granular fuzzy fractional derivatives. IEEE Transactions on Fuzzy Systems, 26(4), 2273–2288 (2017)

    Article  Google Scholar 

  33. Piegat, A., Landowski, M.: Horizontal membership function and examples of its applications. International Journal of Fuzzy Systems, 17(1), 22–30 (2015)

    Article  MathSciNet  Google Scholar 

  34. Sabzalian, M. H., Mohammadzadeh, A., Lin, S., Zhang, W.: Robust fuzzy control for fractional-order systems with estimated fraction-order. Nonlinear Dynamics, 98(3), 2375–2385 (2019)

    Article  MATH  Google Scholar 

  35. Salahshour, S., Allahviranloo, T., Abbasbandy, S.: Solving fuzzy fractional differential equations by fuzzy Laplace transforms. Communications in Nonlinear Science and Numerical Simulation, 17(3), 1372–1381 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  36. Sousa, J. V. D. C., Machado, J. A., De Oliveira, E. C.: The \(\psi \)-Hilfer fractional calculus of variable order and its applications. Computational and Applied Mathematics, 39(4), 1–35 (2020)

    Article  MathSciNet  Google Scholar 

  37. Stamova, I.: Global stability of impulsive fractional differential equations. Applied Mathematics and Computation, 237, 605–612 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  38. Stamova, I.: Mittag-Leffler stability of impulsive differential equations of fractional order. Quarterly of Applied Mathematics, 73(3), 525–535 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  39. Sun, H., Chen, Y., Chen, W.: Random-order fractional differential equation models. Signal Processing, 91(3), 525–530 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  40. Tavares, D., Almeida, R., Torres, D. F.: Caputo derivatives of fractional variable order: numerical approximations. Communications in Nonlinear Science and Numerical Simulation, 35, 69–87 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  41. Van Ngo, H., Lupulescu, V., O’Regan, D.: A note on initial value problems for fractional fuzzy differential equations. Fuzzy Sets and Systems, 347, 54–69 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  42. Vega-Jorquera, P.: Modelling temporal decay of aftershocks by a solution of the fractional reactive equation. Applied Mathematics and Computation, 340, 43–49 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  43. Vu, H., Hoa, N. V.: Uncertain fractional differential equations on a time scale under granular differentiability concept. Computational and Applied Mathematics, 38(3), 1–22 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  44. Wu, C., Liu, X.: Lyapunov and external stability of Caputo fractional order switching systems. Nonlinear Anal. Hybrid Syst 34, 131–146 (2019)

  45. Wu, G.C., Zeng, D.Q., Baleanu, D.: Fractional impulsive differential equations: exact solutions, integral equations and short memory case. Fractional Calculus Appl. Anal. 22(1), 180–192 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  46. Wu, G. C., Deng, Z. G., Baleanu, D., Zeng, D. Q.: New variable-order fractional chaotic systems for fast image encryption. Chaos An Interdisciplinary J Nonlinear Sci, 29(8): 083103 (2019)

  47. Wu, G. C., Luo, M., Huang, L. L., Banerjee, S.: Short memory fractional differential equations for new memristor and neural network design. Nonlinear Dynamics, 100(4), 3611–3623 (2020)

    Article  Google Scholar 

  48. Wu, F., Gao, R., Liu, J., Li, C.: New fractional variable-order creep model with short memory. Appl. Math. Comput. 380, 125278 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  49. Xu, L., Li, J., Ge, S. S.: Impulsive stabilization of fractional differential systems. ISA Transactions, 70, 125–131 (2017)

    Article  Google Scholar 

  50. Yang, X., Li, C., Huang, T., Song, Q.: Mittag-Leffler stability analysis of nonlinear fractional-order systems with impulses. Appl. Math. Comput. 293, 416–422 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  51. Zhang, X., Wei, C., Liu, Y., Luo, M.: Fractional corresponding operator in quantum mechanics and applications: A uniform fractional Schrödinger equation in form and fractional quantization methods. Annals of Physics, 350, 124–136 (2014)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to express deeply gratitude to the anonymous referees for their valuable comments and suggestions which have greatly improved this paper.

Funding

Ngo Van Hoa was funded by the Master, PhD Scholarship Programme of Vingroup Innovation Foundation (VINIF), code VINIF.2022.TS048.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ngo Van Hoa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest concerning the publication of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The manner of the proofs of Lemma 1, Lemma 2, and Lemma 3 is similar to the proofs of Lemma 3.1, Theorem 3.2, and Lemma 3.2 in [6], respectively. Therefore, in the following, we will briefly present the above assertions.

1.1 A. Proof of Lemma 1

Assume that \(0<q_1 \le (q_0+n_x) \le q_2 < 1\), \(x \in [c,d]\) and \(\psi \in \mathcal K_{\psi }\) provided that \(\psi _*(d,c) \in (0,1)\). Observe that

$$\begin{aligned} \psi ^{-q_1}_*(d,c) \le \psi ^{-(q_0+n_x)}_*(d,c) \le \psi ^{-q_2}_*(d,c). \end{aligned}$$
(5.1)

First, it follows from (i) that \({}^C_{gr}\mathcal D_{c^+}^{(q_0+n_x);\psi } w\) is a positive fuzzy function. Then, by utilizing the formula (2.5) of Definition 4, we receive from (5.1) and the property of Gamma function, \(\Gamma (r_2) \le \Gamma (r_1)\) if \( 0<r_1 \le r_2 \le 1\), that

$$\begin{aligned}&\mathbb H({}^C_{gr}\mathcal D_{c^+}^{(q_0+n_x);\psi } w(x)) \\&= \frac{1}{\Gamma (1-(q_0+n_x))} \int \limits _{c}^{x}{ (\psi (x)-\psi (t))^{-(q_0+n_x)} \mathbb H(w'_{gr}(t)) dt} \\&\ge \frac{\psi ^{-(q_0+n_x)}_*(d,c)}{\Gamma (1-q_2)} \int \limits _{c}^{x}{ \dfrac{(\psi (x)-\psi (t))^{-(q_0+n_x)}}{\psi _*^{-(q_0+n_x)}(d,c)} \mathbb H(w'_{gr}(t)) dt} \\&\ge \frac{(\psi (d)-\psi (c))^{-q_1}}{\Gamma (1-q_2)} \int \limits _{c}^{x}{ \left( \dfrac{\psi (x) -\psi (t)}{\psi (d)-\psi (c)}\right) ^{-q_1} \mathbb H(w'_{gr}(t)) dt} \\&= \frac{\Gamma (1-q_1)}{\Gamma (1-q_2)\Gamma (1-q_1)} \int \limits _{c}^{x}{ (\psi (x) -\psi (t))^{-q_1} \mathbb H(w'_{gr}(t)) dt} \\&= \mathcal M \, \mathbb H ({}^C_{gr}\mathcal D_{c^+}^{q_1;\psi } w(x)), \end{aligned}$$

where \(\mathcal M:= \Gamma (1-q_1)/\Gamma (1-q_2)\). Therefore, we deduce there exists a \(\mathcal M\) such that the inequality (2.9) holds.

Next, from (ii), we see the fuzzy function \({}^C_{gr}\mathcal D_{c^+}^{(q_0+n_x);\psi } w\) is negative. With the same manner, we also receive from the formula (2.5) and the inequality (5.1) that

$$\begin{aligned}&\mathbb H({}^C_{gr}\mathcal D_{c^+}^{(q_0+n_x);\psi } w(x)) \\&= \frac{1}{\Gamma (1-(q_0+n_x))} \int \limits _{c}^{x}{ (\psi (x)-\psi (t))^{-(q_0+n_x)} \mathbb H(w'_{gr}(t)) dt} \\&\ge \frac{\psi ^{-(q_0+n_x)}_*(d,c)}{\Gamma (1-q_1)} \int \limits _{c}^{x}{ \dfrac{(\psi (x)-\psi (t))^{-(q_0+n_x)}}{\psi _*^{-(q_0+n_x)}(d,c)} \mathbb H(w'_{gr}(t)) dt} \\&\ge \frac{(\psi (d)-\psi (c))^{-q_2}}{\Gamma (1-q_1)} \int \limits _{c}^{x}{ \left( \dfrac{\psi (x) -\psi (t)}{\psi (d)-\psi (c)}\right) ^{-q_2} \mathbb H(w'_{gr}(t)) dt} \\&= \frac{\Gamma (1-q_2)}{\Gamma (1-q_2)\Gamma (1-q_1)} \int \limits _{c}^{x}{ (\psi (x) -\psi (t))^{-q_2} \mathbb H(w'_{gr}(t)) dt} \\&= \mathcal M \, \mathbb H ({}^C_{gr}\mathcal D_{c^+}^{q_2;\psi } w(x)), \end{aligned}$$

where \(\mathcal M:= \Gamma (1-q_2)/\Gamma (1-q_1)\), which leads to the inequality (2.10) holds.

1.2 B. Proof of Lemma 2

It follows from Definition 2 that in order to demonstrate the inequality (2.11), we will show that

$$\begin{aligned}&\mathbb H\big ({}^C_{gr}\mathcal D_{a^+}^{(q_0+n_x);\psi } w^2(x)\big ) \nonumber \\&\qquad - \mathbb H\big (2w(x){}^C_{gr}\mathcal D_{a^+}^{(q_0+n_x);\psi } w(x)\big ) \le 0. \end{aligned}$$
(5.2)

Through the formula (2.5) in Definition 4 and by using the technique of integration by parts, the left-hand side of (5.2) (LHS-(5.2) for short) becomes

$$\begin{aligned}&\text {LHS}-(5.2) \nonumber \\&= \dfrac{1}{\Gamma (1-(q_0+n_x))} \int \limits _{a}^{x}{} (\psi (x)-\psi (t))^{-(q_0+n_x)} \nonumber \\&\quad \cdot \left( \frac{\partial [w^{gr}(t)]^2}{\partial t} -2w^{gr}(x)\frac{\partial w^{gr}(t)}{\partial t} \right) dt \nonumber \\&=\dfrac{1}{\Gamma (1-(q_0+n_x))} \int \limits _{a}^{x}{ (\psi (x)-\psi (t))^{-(q_0+n_x)} } \nonumber \\&\qquad \cdot \dfrac{\partial }{\partial t}\left( w^{gr}(t) -w^{gr}(x)\right) ^2 dt \nonumber \\&=\dfrac{1}{\Gamma (1-(q_0+n_x))}\dfrac{\left( w^{gr}(t) -w^{gr}(x)\right) ^2}{\left( \psi (x)-\psi (t)\right) ^{(q_0+n_x)}}\Bigg |_{a}^{x} \nonumber \\&- \dfrac{(q_0+n_x)}{\Gamma (1-(q_0+n_x))} \int \limits _{a}^{x}{\psi '(t) \dfrac{\left( w^{gr}(t) -w^{gr}(x)\right) ^2}{(\psi (x)-\psi (t))^{(q_0+n_x)+1}} dt} \end{aligned}$$
(5.3)

where \(w^{gr}(t):=w^{gr}(\alpha ,t, \gamma _w)\). It follows from L’Hopital rule that, for each \((\alpha ,\gamma _w) \in [0,1]\times [0,1],\)

$$\begin{aligned}&\mathop {\lim }\limits _{t \rightarrow x } \dfrac{\left( w^{gr}(t) -w^{gr}(x)\right) ^2}{\left( \psi (x)-\psi (t)\right) ^{(q_0+n_x)}} \\&= 2\mathop {\lim }\limits _{t \rightarrow x } \frac{\partial w^{gr}(t)}{\partial t} \dfrac{\left( w^{gr}(x) -w^{gr}(t)\right) }{(q_0+n_x) \psi '(t) (\psi (x)-\psi (t))^{(q_0+n_x)-1}} \\&= 0. \end{aligned}$$

Then, we imply from (5.3) that

$$\begin{aligned}&\text {LHS}-(5.2) \\&=-\dfrac{1}{\Gamma (1-(q_0+n_x))} \dfrac{\left( w^{gr}(a) -w^{gr}(x)\right) ^2}{\left( \psi (x)-\psi (a)\right) ^{(q_0+n_x)}} \\&-\dfrac{(q_0+n_x)}{\Gamma (1-(q_0+n_x))} \int \limits _{a}^{x}{\psi '(t) \dfrac{\left( w^{gr}(t) -w^{gr}(x)\right) ^2}{(\psi (x)-\psi (t))^{(q_0+n_x)+1}} dt}\\&\le 0. \end{aligned}$$

Therefore, we deduce the inequality on the ROFD (5.2) holds.

1.3 C. Proof of Lemma 3

It follows from Definition 2 that in order to demonstrate the inequality (2.12), we will show that

$$\begin{aligned}&\mathbb H \left( {}^C_{gr}\mathcal D_{a^+}^{(q_0+n_x);\psi } W^T Q W \right) \nonumber \\&\le 2 [W^{gr}(\alpha ,x,\gamma _{W})]^T Q \mathbb H \left( {}^C_{gr}\mathcal D_{a^+}^{(q_0+n_x);\psi } W(x)\right) . \end{aligned}$$
(5.4)

Because Q is symmetric, the matrix Q can be represented as \(Q = P \Lambda P^T,\) where \(P \in \mathbb R^{n \times n}\) is orthogonal and \(\Lambda \in \mathbb R^{n \times n} \) is diagonal. Hence, we notice

$$\begin{aligned}{}[W^{gr}(x)]^T Q W^{gr}(x)&= [W^{gr}(x)]^T P \Lambda P^T W^{gr}(x) \nonumber \\&= (P^T W^{gr}(x))^T \Lambda (P^T W^{gr}(x) ) \nonumber \\&= [Y^{gr}(x)]^T \Lambda Y^{gr}(x), \end{aligned}$$
(5.5)

where one puts \(W^{gr}(x):=W^{gr}(\alpha ,x,\gamma _{W})=(w^{gr}_1(x),\ldots ,w^{gr}_n(x))\) and \(Y^{gr}(x) =P^T W^{gr}(x)\). Because \(\Lambda \) is diagonal, one notices that

$$\begin{aligned}{}[W^{gr}(x)]^T \Lambda W^{gr}(x) = \sum \limits _{i = 1}^n { \beta _{ii} [w_{i}^{gr}(x)]^2}. \end{aligned}$$

By utilizing the inequality (5.2) in Lemma 2 and by the formula (2.5), we imply from (5.5) that

$$\begin{aligned}&\mathbb H \left( {}^C_{gr}\mathcal D_{a^+}^{(q_0+n_x);\psi } W^T(x) Q W (x) \right) \\&= \dfrac{1}{\Gamma (1-(q_0+n_x))} \int \limits _{a}^{x}{ (\psi (x)-\psi (t))^{-(q_0+n_x)} } \\&\qquad \qquad \qquad \cdot \frac{\partial \left( [W^{gr}(t)]^T Q W^{gr}(t)\right) }{\partial t} dt \\&= \sum \limits _{i = 1}^n { \beta _{ii} \mathbb H \left( {}^C_{gr}\mathcal D_{a^+}^{(q_0+n_x);\psi } w^2_i(x)\right) }\\&\le 2\sum \limits _{i = 1}^n { \beta _{ii} \mathbb H \left( w_i(x) {}^C_{gr}\mathcal D_{a^+}^{(q_0+n_x);\psi } w_i(x)\right) } \\&= 2 \mathbb H \left( \sum \limits _{i = 1}^n { \beta _{ii} w_i(x) {}^C_{gr}\mathcal D_{a^+}^{(q_0+n_x);\psi } w_i(x) } \right) \\&= 2 [Y^{gr}(x)]^T \Lambda \mathbb H \left( {}^C_{gr}\mathcal D_{a^+}^{(q_0+n_x);\psi } Y(x) \right) \\&\le 2 [W^{gr}(x)]^T P \Lambda P^T \mathbb H \left( {}^C_{gr}\mathcal D_{a^+}^{(q_0+n_x);\psi } W(x) \right) \\&= 2 [W^{gr}(x)]^T Q \mathbb H \left( {}^C_{gr}\mathcal D_{a^+}^{(q_0+n_x);\psi } W(x) \right) , \end{aligned}$$

which implies that the inequality (5.4) holds.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phu, N.D., Hoa, N.V. Mittag-Leffler stability of random-order fractional nonlinear uncertain dynamic systems with impulsive effects. Nonlinear Dyn 111, 9409–9430 (2023). https://doi.org/10.1007/s11071-023-08340-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08340-x

Keywords

Navigation