Skip to main content
Log in

Control of quantum particle dynamics by impulses of magnetic field

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The problem of control of quantum dynamics particle has been studied. The general equations have obtained for a description of this problem. The criteria for optimal time, reaching the desired point, have been obtained and have analyzed. The different types of spectrum of acting fields using for control, from impulse form of the field to the power form and Gauss distribution force spectrums, have been studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Miller, R., Minsky, M., Smith, D.: Space applications of automation, robotics and machine intelligence systems (ARAMIS), vol. 1: executive summary. Technical Report NASA-CR 162079, NASA (1982)

  2. Dubowsky, S.: Advanced methods for the dynamic control of high performance robotic devices and manipulators with potential for applications in space. Technical Report NASA-CR-181061, NASA (1987)

  3. Flores-Abada, A., Maa, O., Phamb, K., Ulrich, S.: A review of space robotics technologies for on-orbit servicing. Prog. Aerosp. Sci. 1–26 (2014)

  4. Jalamkar, D., Selvakumar, A.: Use of internet of things in a humanoid robot–a review. Adv. Robot. Autom. 5, 150 (2015). doi:10.4172/2168-9695.1000150

    Google Scholar 

  5. Li, C., Sprott, J.C.: Amplitude control approach for chaotic signals. Nonlinear Dyn. 73(3), 1335–1341 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fey, R.H.B., Nijmeijer, H., Shukla, A.: Special issue on stability of non-linear dynamic structures and systems. Nonlinear Dyn. 66, 247–250 (2011). doi:10.1007/s11071-011-0168-2

    Article  MathSciNet  Google Scholar 

  7. Niu, B., Zhu, J., Su, Y., Li, H., Li, L.: Tracking control of uncertain switched nonlinear cascade systems: a nonlinear \(\text{ H }_{\infty }\) sliding mode control method. Nonlinear Dyn. 73, 1803–1812 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kuntanapreeda, S.: Adaptive control of fractional-order unified chaotic systems using a passivity-based control approach. Nonlinear Dyn. 84, 2505–2515 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Valipour, M.: Optimization of neural networks for precipitation analysis in a humid region to detect drought and wet year alarms. Meteorol. Appl. 23(1), 91–100 (2016). doi:10.1002/met.1533

    Article  Google Scholar 

  10. Yannopoulos, S.I., Lyberatos, G., Theodossiou, N., Wang, Li, Valipour, M., Tamburrino, A., Angelakis, A.N.: Evolution of water lifting devices (pumps) over the centuries worldwide surface irrigation simulation models: a review. Water 7(9), 5031–5060 (2015). doi:10.3390/w7095031

  11. Valiev, K.A.: Quantum computers and quantum calculations. Uspekhi fizicheskih nauk (in Russian). 175, 3–39 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Shor, P.W.: Algorithms for computation: Discrete logarithms and factoring. In: Proc. of the \(35^{{\rm th}}\) Annual Symp. on the Foundation of Computer Science, pp. 124–134. Los Alamitos (1994)

  13. Shor, P.W., Preskil, J.: Simple proof of security of the BB84 quantum key distribution protocol, arXiv:quant-ph/0003004 (2000)

  14. Shor, P.W., Smolin, J.A.: Quantum error–correcting codes need not completely reveal the error syndrome. arXiv:quant-ph/9604006 (1996)

  15. Nilsen, M.A., Chuang, I.L.: Quantum Calculations and Quantum Information. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  16. Ekert, A., Jozsa, R.: Quantum computation and Shor’s factoring algorithm. Rev. Mod. Phys. 68, 1 (1996)

    Article  MathSciNet  Google Scholar 

  17. Gruska, J.: Quantum Computing. McGraw Hill, London (1999)

    MATH  Google Scholar 

  18. Imre, S., Balazs, F.: Quantum Computing and Communications. Wiley, Hoboken (2005)

    Google Scholar 

  19. Feynman, R.P.: Simulating physics with computers. Int. J. Theor. Phys 21, 467 (1982)

    Article  MathSciNet  Google Scholar 

  20. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proc. of the \(28^{{\rm th}}\) Annual ACM Symp. on Theory of Computation (Philadelphia, Pennsylvania), pp. 212-218. ACM Press, New York (1996)

  21. Gurman, V.: Transformations of controlled systems for studying impulse regimes. Automatika and Telemehanika (in Russian) 4, 89–97 (2009)

    MathSciNet  Google Scholar 

Download references

Acknowledgments

This work has been initiated in the frameworks of grant 1 3484 of Russian Ministry of sciences and education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. E. Arkhincheev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arkhincheev, V.E. Control of quantum particle dynamics by impulses of magnetic field. Nonlinear Dyn 87, 1873–1877 (2017). https://doi.org/10.1007/s11071-016-3159-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3159-5

Keywords

Navigation