Skip to main content
Log in

Dynamics of a driven damped particle in the presence of a magnetic field: Asymmetric splitting of the output signal

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In this paper, we have investigated the dynamics of a damped harmonic oscillator in the presence of an electromagnetic field. Magnetic field may induce asymmetric splitting of the spectrum of the output signal with two peaks in the case of a driven damped two-dimensional harmonic oscillator. One more additional peak may appear for the three-dimensional case. At the same time, one may observe an antiresonance phenomenon even for the driven damped cyclotron motion where the system with the purely non-conservative force fields is driven by an electric field. Finally, our calculation exhibits how the magnetic field can modulate the frequency of a harmonic oscillator, the phase difference (between the input and the output signals) and the efficiency like quantity of the energy storing process, respectively. Thus, the present study might be applicable in areas related to refractive index, the barrier crossing dynamics and autonomous stochastic resonance, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. B Scrosati (ed.), Applications of electroactive polymers (Chapman & Hall, London, 1993); P G Bruce, Solid State Electrochemistry (Cambridge University Press, Cambridge, 1995)

    Google Scholar 

  2. F M Gray, Polymer electrolytes (RSC Materials Monographs, The Royal Society of Chemistry, Cambridge, 1997)

    Google Scholar 

  3. A Barnes, A Despotakis, T C P Wong, A P Anderson, B Chambers and P V Wright, Smart Mater. Struct. 7, 752 (1998)

    Article  ADS  Google Scholar 

  4. G S MacGlashan, Y G Andreev and P G Bruce, Nature (London) 398, 792 (1999)

    Article  ADS  Google Scholar 

  5. J-M Tarascon and M Armand, Nature 414, 359 (2001)

  6. C A Angell, C Liu and E Sanchez, Nature (London) 137, 362 (1993)

    Google Scholar 

  7. A M Christie, S J Lilley, E Staunton, Y G Andreev and P G Bruce, Nature (London) 433, 50 (2005)

    Article  ADS  Google Scholar 

  8. K Amemiya, J. Phys. Soc. Jpn. 72, 135 (2003)

    Article  ADS  Google Scholar 

  9. A S Moskalenkoa, S D Ganicheva, V I Pereí and I N Yassievicha, Physica B 273–274, 1007 (1999); V I Pereí and I N Yassievich, JETP Lett. 68, 804 (1998); A S Moskalenko, V I Pereí and I N Yassievich, JETP 90, 217 (2000)

  10. N Telang and S Bandyopadhyay, Appl. Phys. Lett. 66, 1623 (1995)

    Article  ADS  Google Scholar 

  11. E E Vdovin, A Levin, A Patanè, L Eaves, P C Main, Y N Khanin, Y V Dubrovskii, M Henini and G Hill, Science 290, 122 (2000)

    Article  ADS  Google Scholar 

  12. A Baura, M K Sen and B C Bag, Phys. Chem. Chem. Phys. 13, 9445 (2011)

    Article  Google Scholar 

  13. A Baura, M K Sen and B C Bag, Chem. Phys. 417, 30 (2013)

    Article  Google Scholar 

  14. A Baura, S Ray and B C Bag, J. Chem. Phys. 138, 244110 (2013)

    Article  ADS  Google Scholar 

  15. S Mondal, S Das, A Baura and B C Bag, J. Chem. Phys. 141, 224101 (2014)

    Article  ADS  Google Scholar 

  16. S Mondal, A Baura, S Das and B C Bag, Physica A 502, 58 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  17. H A Kramers, Physica (Utrecht) 7, 284 (1940)

    Article  ADS  MathSciNet  Google Scholar 

  18. S Mondal, J Das, B C Bag and F Marchesoni, Phys. Rev. E 98, 012120 (2018)

    Article  ADS  Google Scholar 

  19. R P Feynman, R B Leighton and M Sands, The Feynman lectures on physics (Addison-Wesley Publishing Company, Inc., 1963) Vol. 1

  20. R P Feynman, R B Leighton and M Sands, The Feynman lectures on physics (Addison-Wesley Publishing Company, Inc., 1963) Vol. 2

  21. K R Symon, Mechanis, 2nd Edn (Addison-Wesley Publishing Company, Inc., 1960)

  22. A H Taub, Phys. Rev. 73, 786 (1948); B Leaf, Phys. Rev. 127, 1369 (1962); C S Roberts and S J Buchsbaum, Phys. Rev. A 135, 382 (1964); D J Kaup, Phys. Rev. 152, 1130 (1966)

  23. J D Jackson, Classical electrodynamics, 2nd Edn (Wiley, New York, 1975); J Herrera, Phys. Rev. D 15, 453 (1977); O T Kosmas, AIP Conf. Proc. 1389, 1927 (2011); A Tursunov, Z Stuchlik and M Kolos, Phys. Rev. D 93, 084012 (2016); M N Boldyreva and A A Magazev, J. Phys.: Conf. Ser. 1441, 012001 (2020); M Formanek, A Steinmetz and J Rafelski, Phys. Rev. A 103, 052218 (2021)

  24. A Saha and A M Jayannavar, Phys. Rev. E 77, 022105 (2008); D Roy and N Kumar, Phys. Rev. E 78, 052102 (2008); S Gupta and M Bandyopadhyay, Phys. Rev. E 84, 041133 (2011); J I Jiménez-Aquino and R M Velasco, Phys. Rev. E 87, 022112 (2013); T Chen, X-B Wang and T Yu, Phys. Rev. E 90, 022101 (2014)

  25. J Das, S Mondal and B C Bag, J. Chem. Phys. 147, 164102 (2017); J Das and B C Bag, Phys. Rev. E 103, 046101 (2021); J Das, M Biswas and B C Bag, arXiv:2011.09771

  26. J C Hidalgo-Gonzalez and J I Jiménez-Aquino, Phys. Rev. E 100, 062102 (2019)

    Article  ADS  Google Scholar 

  27. A Baura, M K Sen and B C Bag, Phys. Rev. E 82, 041102 (2010); P S Pal, S Rana, A Saha and A M. Jayannavar, Phys. Rev. E 90, 022143 (2014)

  28. F N C Paraan, M P Solon and J P Esguerra, Phys. Rev. E 77, 022101 (2008)

    Article  ADS  Google Scholar 

  29. A Baura, M K Sen and B C Bag, Eur. Phys. J. B 75, 267 (2010); A Baura, S Ray, M K Sen and B C Bag, J. Appl. Phys. 113, 124905 (2013)

  30. J C Hidalgo-Gonzalez, J I Jiménez-Aquino and M Romero-Bastida, Physica A 462, 1128 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  31. S Ray, A Baura and B C Bag, Chaos 23, 043121 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  32. M L Mittal, Y S Prahalad and D G Thirtha, J. Phys. A: Math. Gen. 13, 1095 (1980); A M Jayannavar and M Sahoo, Phys. Rev. E 75, 032102 (2007); D Roy and N Kumar, Phys. Rev. E 78, 052102 (2008)

  33. S E Savelév and F Marchesoni, Phys. Rev. E 90, 062117 (2014)

    Article  ADS  Google Scholar 

  34. T Chen, X-B Wang and T Yu, Phys. Rev. E 90, 022101 (2014); S Ray, M Rano and B C Bag, J. Chem. Phys. 142, 154122 (2015)

  35. A K Ram and B Dasgupta, Physics Plasmas 17, 122104 (2010); V Gelfreich, V Rom-Kedar, K Shah and D Turaev, Phys. Rev. Lett. 106, 074101 (2011)

  36. T H Hsieh and H J Keh, J. Chem. Phys. 134, 044125 (2011); 136, 174702 (2012); 138, 074105 (2013)

  37. G Ivanovski, D Jakimovski and V Sopova, Phys. Lett. A 183, 24 (1993); N Voropajeva and T Örd, Phys. Lett. A 372, 2167 (2008); M-L Liang and Y Jiang, Phys. Lett. A 375, 1 (2010); M-Y Lai and X-Y Pan, Sci. Rep. 6, 35412 (2016)

  38. L D Landau and E M Lifshitz, The classical theory of fields 3rd revised Edn (Pergamon Press Ltd., Oxford, 1971)

    MATH  Google Scholar 

  39. L R R Biswas, J Das and B C Bag, arXiv preprint arXiv:2107.13305

  40. S Belbasi, M E Foulaadvand and Y S Joe, Am. J. Phys. 82, 32 (2014); R Jothimurugan, K Thamilmaran, S Rajasekar and M A F Sanjuán, Nonlin. Dyn. 83, 1803 (2015); P Sarkar and D S Ray, Phys. Rev. E 99, 052221 (2019)

  41. L R R Biswas, S Mondal and B C Bag, manuscript under preparation

  42. M Biswas, S Mondal and B C Bag, manuscript under preparation

  43. H Hosoda, H Mori, N Sogoshi, A Nagasawa and S Nakabayashi, J. Phys. Chem. A 108, 1461 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

L R R Biswas is happy to acknowledge the fellowship through the DST-INSPIRE scheme from the Department of Science and technology, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bidhan Chandra Bag.

Appendices

Appendix A: Definition of relevant quantities which appear in eqs (28) and (29)

\(A_1, A_2, B_1, B_2, C_1\) and \(C_2\) which appear in eqs (28) and (29) are defined as

$$\begin{aligned}&A_{1}=(H_{c}H_{x}-H_{z}H_{2})(H_{b}H_{c}+H_{3}H_{6})\\&\qquad \quad +(H_{c}H_{y}+H_{z}H_{3})(H_{c}H_{1}+H_{2}H_{6}),\\&A_{2}=(H_{c}H_{x}^{\prime }-H_{z}^{\prime }H_{2})(H_{b}H_{c}+H_{3}H_{6})\\&\qquad \quad +(H_{c}H_{y}^{\prime }+H_{z}^{\prime }H_{3})(H_{c}H_{1}+H_{2}H_{6}),\\&B_{1}=(H_{c}H_{y}+H_{z}H_{3})(H_{a}H_{c}+H_{2}H_{5})\\&\qquad \quad -(H_{c}H_{x}-H_{z}H_{2})(H_{c}H_{4}-H_{3}H_{5}),\\&B_{2}=(H_{c}H_{y}^{\prime }+H_{z}^{\prime }H_{3})(H_{a}H_{c}+H_{2}H_{5})\\&\qquad \quad -(H_{c}H_{x}^{\prime }-H_{z}^{\prime }H_{2})(H_{c}H_{4}-H_{3}H_{5}),\\&C_{1}=(H_{b}H_{z}-H_{y}H_{6})(H_{a}H_{b}+H_{1}H_{4})\\&\qquad \quad +(H_{b}H_{x}+H_{y}H_{1})(H_{b}H_{5}+H_{4}H_{6}),\\&C_{2}=(H_{b}H_{z}^{\prime }-H_{y}^{\prime }H_{6})(H_{a}H_{b}+H_{1}H_{4})\\&\qquad \quad +(H_{b}H_{x}^{\prime }+H_{y}H_{1})(H_{b}H_{5}+H_{4}H_{6}),\\&D_{1}=(H_{a}H_{c}+H_{2}H_{5})(H_{b}H_{c}+H_{3}H_{6})\\&\qquad \quad +(H_{c}H_{1}+H_{2}H_{6})(H_{c}H_{4}-H_{3}H_{5}),\\&D_{2}=(H_{a}H_{b}+H_{1}H_{4})(H_{b}H_{c}+H_{3}H_{6})\\&\qquad \quad +(H_{b}H_{5}+H_{4}H_{6})(H_{b}H_{2}-H_{1}H_{3}) \end{aligned}$$

with

$$\begin{aligned}&H_{a}=\big (\omega _{x}^{2}-\omega _{E}^{2}\big )^{2}\big (\omega _{y}^{2}-\omega _{E}^{2}\big )\big (\omega _{z}^{2}-\omega _{E}^{2}\big )+\Big \{\gamma ^{2}\big (\omega _{y}^{2}-\omega _{E}^{2}\big )\big (\omega _{z}^{2}-\omega _{E}^{2}\big )-\Omega _{y}^{2}\big (\omega _{x}^{2}-\omega _{E}^{2}\big )\big (\omega _{y}^{2}-\omega _{E}^{2}\big )\\&\qquad -\Omega _{z}^{2}\big (\omega _{z}^{2}-\omega _{E}^{2}\big )\big (\omega _{x}^{2}-\omega _{E}^{2}\big )\Big \}\omega _{E}^{2},\\&H_{b}=\big (\omega _{x}^{2}-\omega _{E}^{2}\big )\big (\omega _{y}^{2}-\omega _{E}^{2}\big )^{2}\big (\omega _{z}^{2}-\omega _{E}^{2}\big )+\Big \{\gamma ^{2}\big (\omega _{z}^{2}-\omega _{E}^{2}\big )\big (\omega _{x}^{2}-\omega _{E}^{2}\big )-\Omega _{z}^{2}\big (\omega _{y}^{2}-\omega _{E}^{2}\big )\big (\omega _{z}^{2}-\omega _{E}^{2}\big )\\&\qquad -\Omega _{x}^{2}\big (\omega _{x}^{2}-\omega _{E}^{2}\big )\big (\omega _{y}^{2}-\omega _{E}^{2}\big )\Big \}\omega _{E}^{2},\\&H_{c}=\big (\omega _{x}^{2}-\omega _{E}^{2}\big )\big (\omega _{y}^{2}-\omega _{E}^{2}\big )\big (\omega _{z}^{2}-\omega _{E}^{2}\big )^{2}+\Big \{\gamma ^{2}\big (\omega _{x}^{2}-\omega _{E}^{2}\big )\big (\omega _{y}^{2}-\omega _{E}^{2}\big )-\Omega _{x}^{2}\big (\omega _{z}^{2}-\omega _{E}^{2}\big )\big (\omega _{x}^{2}-\omega _{E}^{2}\big )\\&\qquad -\Omega _{y}^{2}\big (\omega _{y}^{2}-\omega _{E}^{2}\big )\big (\omega _{z}^{2}-\omega _{E}^{2}\big )\Big \}\omega _{E}^{2},\\&H_{x}=\frac{q}{m}\Big \{ E_{0x}\big (\omega _{x}^{2}-\omega _{E}^{2}\big )\big (\omega _{y}^{2}-\omega _{E}^{2}\big )\big (\omega _{z}^{2}-\omega _{E}^{2}\big )\cos \phi _{x}-E_{0x}\gamma \omega _{E}\big (\omega _{y}^{2}-\omega _{E}^{2}\big )\big (\omega _{z}^{2}-\omega _{E}^{2}\big )\sin \phi _{x}\\&\qquad +E_{0y}\Omega _{z}\omega _{E}\big (\omega _{z}^{2}-\omega _{E}^{2}\big )\big (\omega _{x}^{2}-\omega _{E}^{2}\big )\sin \phi _{y}-E_{0z}\Omega _{y}\omega _{E}\big (\omega _{x}^{2}-\omega _{E}^{2}\big )\big (\omega _{y}^{2}-\omega _{E}^{2}\big )\sin \phi _{z}\Big \}\\&H_{y}=\frac{q}{m}\Big \{ E_{0y}\big (\omega _{x}^{2}-\omega _{E}^{2}\big )\big (\omega _{y}^{2}-\omega _{E}^{2}\big )\big (\omega _{z}^{2}-\omega _{E}^{2}\big )\cos \phi _{y}-E_{0x}\Omega _{z}\omega _{E}\big (\omega _{y}^{2}-\omega _{E}^{2}\big )\big (\omega _{z}^{2}-\omega _{E}^{2}\big )\sin \phi _{x}\\&\qquad -E_{0y}\gamma \omega _{E}\big (\omega _{z}^{2}-\omega _{E}^{2}\big )\big (\omega _{x}^{2}-\omega _{E}^{2}\big )\sin \phi _{y}+E_{0z}\Omega _{x}\omega _{E}\big (\omega _{x}^{2}-\omega _{E}^{2}\big )\big (\omega _{y}^{2}-\omega _{E}^{2}\big )\sin \phi _{z}\Big \},\end{aligned}$$
$$\begin{aligned}&H_{z}=\frac{q}{m}\Big \{ E_{0z}\big (\omega _{x}^{2}-\omega _{E}^{2}\big )\big (\omega _{y}^{2}-\omega _{E}^{2}\big )\big (\omega _{z}^{2}-\omega _{E}^{2}\big )\cos \phi _{z}+E_{0x}\Omega _{y}\omega _{E}\big (\omega _{y}^{2}-\omega _{E}^{2}\big )\big (\omega _{z}^{2}-\omega _{E}^{2}\big )\sin \phi _{x}\\&\qquad -E_{0y}\Omega _{x}\omega _{E}\big (\omega _{z}^{2}-\omega _{E}^{2}\big )\big (\omega _{x}^{2}-\omega _{E}^{2}\big )\sin \phi _{y}-E_{0z}\gamma \omega _{E}\big (\omega _{x}^{2}-\omega _{E}^{2}\big )\big (\omega _{y}^{2}-\omega _{E}^{2}\big )\sin \phi _{z}\Big \},\\&H_{x}^{\prime }=\frac{q}{m}\Big \{ E_{0x}\big (\omega _{x}^{2}-\omega _{E}^{2}\big )\big (\omega _{y}^{2}-\omega _{E}^{2}\big )\big (\omega _{z}^{2}-\omega _{E}^{2}\big )\sin \phi _{x}+E_{0x}\gamma \omega _{E}\big (\omega _{y}^{2}-\omega _{E}^{2}\big )\big (\omega _{z}^{2}-\omega _{E}^{2}\big )\cos \phi _{x}\\&\qquad -E_{0y}\Omega _{z}\omega _{E}\big (\omega _{z}^{2}-\omega _{E}^{2}\big )\big (\omega _{x}^{2}-\omega _{E}^{2}\big )\cos \phi _{y}+E_{0z}\Omega _{y}\omega _{E}\big (\omega _{x}^{2}-\omega _{E}^{2}\big )\big (\omega _{y}^{2}-\omega _{E}^{2}\big )\cos \phi _{z}\Big \},\\&H_{y}^{\prime }=\frac{q}{m}\Big \{ E_{0y}\big (\omega _{x}^{2}-\omega _{E}^{2}\big )\big (\omega _{y}^{2}-\omega _{E}^{2}\big )\big (\omega _{z}^{2}-\omega _{E}^{2}\big )\sin \phi _{y}+E_{0x}\Omega _{z}\omega _{E}\big (\omega _{y}^{2}-\omega _{E}^{2}\big )\big (\omega _{z}^{2}-\omega _{E}^{2}\big )\cos \phi _{x}\\&\qquad +E_{0y}\gamma \omega _{E}\big (\omega _{z}^{2}-\omega _{E}^{2}\big )\big (\omega _{x}^{2}-\omega _{E}^{2}\big )\cos \phi _{y}-E_{0z}\Omega _{x}\omega _{E}\big (\omega _{x}^{2}-\omega _{E}^{2}\big )\big (\omega _{y}^{2}-\omega _{E}^{2}\big )\cos \phi _{z}\Big \},\\&H_{z}^{\prime }=\frac{q}{m}\Big \{ E_{0z}\big (\omega _{x}^{2}-\omega _{E}^{2}\big )\big (\omega _{y}^{2}-\omega _{E}^{2}\big )\big (\omega _{z}^{2}-\omega _{E}^{2}\big )\sin \phi _{z}-E_{0x}\Omega _{y}\omega _{E}\big (\omega _{y}^{2}-\omega _{E}^{2}\big )\big (\omega _{z}^{2}-\omega _{E}^{2}\big )\cos \phi _{x}\\&\qquad +E_{0y}\Omega _{x}\omega _{E}\big (\omega _{z}^{2}-\omega _{E}^{2}\big )\big (\omega _{x}^{2}-\omega _{E}^{2}\big )\cos \phi _{y}+E_{0z}\gamma \omega _{E}\big (\omega _{x}^{2}-\omega _{E}^{2}\big )\big (\omega _{y}^{2}-\omega _{E}^{2}\big )\cos \phi _{z}\Big \},\\&H_{1}=\Big \{\gamma \Omega _{z}\big (\omega _{y}^{2}-\omega _{E}^{2}\big )\big (\omega _{z}^{2}-\omega _{E}^{2}\big )+\gamma \Omega _{z}\big (\omega _{z}^{2}-\omega _{E}^{2}\big )\big (\omega _{x}^{2}-\omega _{E}^{2}\big )-\Omega _{x}\Omega _{y}\big (\omega _{x}^{2}-\omega _{E}^{2}\big )\big (\omega _{y}^{2}-\omega _{E}^{2}\big )\Big \}\omega _{E}^{2},\\&H_{2}=\Big \{\gamma \Omega _{y}\big (\omega _{x}^{2}-\omega _{E}^{2}\big )\big (\omega _{y}^{2}-\omega _{E}^{2}\big )+\gamma \Omega _{y}\big (\omega _{y}^{2}-\omega _{E}^{2}\big )\big (\omega _{z}^{2}-\omega _{E}^{2}\big )+\Omega _{z}\Omega _{x}\big (\omega _{z}^{2}-\omega _{E}^{2}\big )\big (\omega _{x}^{2}-\omega _{E}^{2}\big )\Big \}\omega _{E}^{2},\\&H_{3}=\Big \{\gamma \Omega _{x}\big (\omega _{x}^{2}-\omega _{E}^{2}\big )\big (\omega _{y}^{2}-\omega _{E}^{2}\big )+\gamma \Omega _{x}\big (\omega _{z}^{2}-\omega _{E}^{2}\big )\big (\omega _{x}^{2}-\omega _{E}^{2}\big )-\Omega _{y}\Omega _{z}\big (\omega _{y}^{2}-\omega _{E}^{2}\big )\big (\omega _{z}^{2}-\omega _{E}^{2}\big )\Big \}\omega _{E}^{2},\\&H_{4}=\Big \{\gamma \Omega _{z}\big (\omega _{y}^{2}-\omega _{E}^{2}\big )\big (\omega _{z}^{2}-\omega _{E}^{2}\big )+\gamma \Omega _{z}\big (\omega _{z}^{2}-\omega _{E}^{2}\big )\big (\omega _{x}^{2}-\omega _{E}^{2}\big )+\Omega _{x}\Omega _{y}\big (\omega _{x}^{2}-\omega _{E}^{2}\big )\big (\omega _{y}^{2}-\omega _{E}^{2}\big )\Big \}\omega _{E}^{2},\\&H_{5}=\Big \{\gamma \Omega _{y}\big (\omega _{x}^{2}-\omega _{E}^{2}\big )\big (\omega _{y}^{2}-\omega _{E}^{2}\big )+\gamma \Omega _{y}\big (\omega _{y}^{2}-\omega _{E}^{2}\big )\big (\omega _{z}^{2}-\omega _{E}^{2}\big )-\Omega _{z}\Omega _{x}\big (\omega _{z}^{2}-\omega _{E}^{2}\big )\big (\omega _{x}^{2}-\omega _{E}^{2}\big )\Big \}\omega _{E}^{2} \end{aligned}$$

and

$$\begin{aligned}&H_{6}=\Big \{\gamma \Omega _{x}\big (\omega _{x}^{2}-\omega _{E}^{2}\big )\big (\omega _{y}^{2}-\omega _{E}^{2}\big )\\&\qquad +\gamma \Omega _{x}\big (\omega _{z}^{2}-\omega _{E}^{2}\big )\big (\omega _{x}^{2}-\omega _{E}^{2}\big )\\&\qquad +\Omega _{y}\Omega _{z}\big (\omega _{y}^{2}-\omega _{E}^{2}\big )\big (\omega _{z}^{2}-\omega _{E}^{2}\big )\Big \}\omega _{E}^{2}. \end{aligned}$$

For the condition, \(\omega _{x}=\omega _{y}=\omega _{z}=\omega \) and \(\Omega _{x}=\Omega _{y}=\Omega _{z}=\Omega \) the above relations become

$$\begin{aligned}&A_{1}=(H_{x}H_{0}-H_{z}H_{2})(H_{0}^{2}+H_{1}H_{2})\\&\qquad +(H_{y}H_{0}+H_{z}H_{1})(H_{2}^{2}+H_{0}H_{1}),\\&A_{2}=(H_{x}^{\prime }H_{0}-H_{z}^{\prime }H_{2})(H_{0}^{2}+H_{1}H_{2})\\&\qquad +(H_{y}^{\prime }H_{0}+H_{z}^{\prime }H_{1})(H_{2}^{2}+H_{0}H_{1}),\\&B_{1}=(H_{y}H_{0}+H_{z}H_{1})(H_{0}^{2}+H_{1}H_{2})\\&\qquad +(H_{x}H_{0}-H_{z}H_{2})(H_{1}^{2}-H_{0}H_{2}),\\&B_{2}=(H_{y}^{\prime }H_{0}+H_{z}^{\prime }H_{1})(H_{0}^{2}+H_{1}H_{2})\\&\qquad +(H_{x}^{\prime }H_{0}-H_{z}^{\prime }H_{2})(H_{1}^{2}-H_{0}H_{2}),\\&C_{1}=(H_{z}H_{0}+H_{x}H_{1})(H_{0}^{2}+H_{1}H_{2})\\&\qquad +(H_{y}H_{0}-H_{x}H_{2})(H_{1}^{2}-H_{0}H_{2}), \end{aligned}$$
$$\begin{aligned}&C_{2}=(H_{z}^{\prime }H_{0}+H_{x}^{\prime }H_{1})(H_{0}^{2}+H_{1}H_{2})\\&\qquad +(H_{y}^{\prime }H_{0}-H_{x}^{\prime }H_{2})(H_{1}^{2}-H_{0}H_{2}) \end{aligned}$$

and

$$\begin{aligned}&D_{1}=D_{2}=D=(H_{0}^{2}+H_{1}H_{2})^{2}\\&-(H_{1}^{2}-H_{0}H_{2})(H_{2}^{2}+H_{0}H_{1}) \end{aligned}$$

with

$$\begin{aligned}&H_{0}=\big (\omega ^{2}-\omega _{E}^{2}\big )^{2}-\big (2\Omega ^{2}-\gamma ^{2}\big )\omega _{E}^{2},\\&H_{1}=\Omega \omega _{E}^{2}\big (2\gamma -\Omega \big ),\\&H_{2}=\Omega \omega _{E}^{2}\big (2\gamma +\Omega \big ),\\&H_{x}=\frac{q}{m}E_{0x}\big (\omega ^{2}-\omega _{E}^{2}\big ),\\&H_{y}=\frac{q}{m}E_{0y}\big (\omega ^{2}-\omega _{E}^{2}\big ),\\&H_{z}=\frac{q}{m}E_{0z}\big (\omega ^{2}-\omega _{E}^{2}\big ),\\&H_{x}^{\prime }=\frac{q}{m}\omega _{E}\big (\gamma E_{0x}-\Omega E_{0y}+\Omega E_{0z}\big ),\\&H_{y}^{\prime }=\frac{q}{m}\omega _{E}\big (\gamma E_{0y}-\Omega E_{0z}+\Omega E_{0x}\big ) \end{aligned}$$

and

$$\begin{aligned} H_{z}^{\prime }=\frac{q}{m}\omega _{E}\big (\gamma E_{0z}-\Omega E_{0x}+\Omega E_{0y}\big ). \end{aligned}$$

Appendix B: Definition of the relevant quantities which appear in eq. (34)

\(H_0, H_1, H_2, H_3\) and \(H_4\) which appear in eq. (34) are defined as

$$\begin{aligned}&H_{0}=H_{0x}H_{0y}+\gamma ^{2}\Omega ^{2}\omega _{E}^{4}\big (\omega _{x}^{2}+\omega _{y}^{2}-2\omega _{E}^{2}\big )^{2},\\&H_{1}=\frac{q}{m}\big (\omega _{x}^{2}-\omega _{E}^{2}\big )\big (\omega _{y}^{2}-\omega _{E}^{2}\big )\big \{ E_{0x}H_{0y}\\&\quad +E_{0y}\gamma \Omega \omega _{E}^{2}\big (\omega _{x}^{2}+\omega _{y}^{2}-2\omega _{E}^{2}\big )\big \},\\&H_{2}=\frac{q}{m}\omega _{E}\big (\omega _{y}^{2}-\omega _{E}^{2}\big )\big \{ E_{0x}H_{0y}\gamma -E_{0y}H_{0x}\Omega \\&\quad +\gamma \Omega \omega _{E}^{2}\big (\omega _{x}^{2}+\omega _{y}^{2}-2\omega _{E}^{2}\big )\big (E_{0y}\gamma +E_{0x}\Omega \big )\big \},\\&H_{3}=\frac{q}{m}\big (\omega _{x}^{2}-\omega _{E}^{2}\big )\big (\omega _{y}^{2}-\omega _{E}^{2}\big )\big \{ E_{0y}H_{0x}\\&\quad -E_{0x}\gamma \Omega \omega _{E}^{2}\big (\omega _{x}^{2}+\omega _{y}^{2}-2\omega _{E}^{2}\big )\big \} \end{aligned}$$

and

$$\begin{aligned}&H_{4}=\frac{q}{m}\omega _{E}\big (\omega _{x}^{2}-\omega _{E}^{2}\big )\big \{E_{0y}H_{0x}\gamma +E_{0x}H_{0y}\Omega \\&\qquad +\gamma \Omega \omega _{E}^{2}\big (\omega _{x}^{2}+\omega _{y}^{2}-2\omega _{E}^{2}\big )\big (E_{0y}\Omega -E_{0x}\gamma \big )\big \} \end{aligned}$$

with

$$\begin{aligned}&H_{0x}=\big (\omega _{x}^{2}-\omega _{E}^{2}\big )^{2}\big (\omega _{y}^{2}-\omega _{E}^{2}\big )\\&\qquad +\gamma ^{2}\omega _{E}^{2}\big (\omega _{y}^{2}-\omega _{E}^{2}\big )-\Omega ^{2}\omega _{E}^{2}\big (\omega _{x}^{2}-\omega _{E}^{2}\big ) \end{aligned}$$

and

$$\begin{aligned}&H_{0y}=\big (\omega _{y}^{2}-\omega _{E}^{2}\big )^{2}\big (\omega _{x}^{2}-\omega _{E}^{2}\big )\\&\qquad +\gamma ^{2}\omega _{E}^{2}\big (\omega _{x}^{2}-\omega _{E}^{2}\big )-\Omega ^{2}\omega _{E}^{2}\big (\omega _{y}^{2}-\omega _{E}^{2}\big ). \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswas, L.R.R., Das, J. & Bag, B.C. Dynamics of a driven damped particle in the presence of a magnetic field: Asymmetric splitting of the output signal. Pramana - J Phys 96, 191 (2022). https://doi.org/10.1007/s12043-022-02438-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-022-02438-4

Keywords

PACS Nos

Navigation