Skip to main content
Log in

Fractal basin boundaries and escape dynamics in a multiwell potential

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The escape dynamics in a two-dimensional multiwell potential is explored. A thorough numerical investigation is conducted in several types of two-dimensional planes and also in a three-dimensional subspace of the entire four-dimensional phase space in order to distinguish between non-escaping (ordered and chaotic) and escaping orbits. The determination of the location of the basins of escape toward the different escape channels and their correlations with the corresponding escape time of the orbits is undoubtedly an issue of paramount importance. It was found that in all examined cases regions of non-escaping motion coexist with several basins of escape. Furthermore, we monitor how the percentages of all types of orbits evolve when the total orbital energy varies. The larger escape periods have been measured for orbits with initial conditions in the fractal basin boundaries, while the lowest escape rates belong to orbits with initial conditions inside the basins of escape. The Newton–Raphson basins of attraction of the equilibrium points of the system have also been determined. We hope that our numerical analysis will be useful for a further understanding of the escape mechanism of orbits in open Hamiltonian systems with two degrees of freedom.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. The SALI method was chosen over more classical dynamical indicators (e.g., the positive Lyapunov exponent, the fast Fourier transform) for distinguishing between order and chaos because it can automatically classify initial conditions of orbits using only the final numerical value of SALI at the end of the numerical integration. On the other hand, for all other classical methods we need to plot either the time evolution of the indicator (e.g., the positive Lyapunov exponent) or the shape of the spectrum (e.g., the fast Fourier transform) in order to determine the character of an orbit. Obviously, this is not possible when we have to classify large sets of initial conditions of orbits. In this case, the ideal solution is a “one-number index” such as the SALI.

References

  1. Aguirre, J., Vallego, J.C., Sanjuán, M.A.F.: Wada basins and chaotic invariant sets in the Hénon-Heiles system. Phys. Rev. E 64, 066208-1–066208-11 (2001)

    Article  Google Scholar 

  2. Aguirre, J., Viana, R.L., Sanjuán, M.A.F.: Fractal structures in nonlinear dynamics. Rev. Mod. Phys. 81, 333–386 (2009)

    Article  Google Scholar 

  3. Barrio, R., Blesa, F., Serrano, S.: Fractal structures in the Hénon-Heiles Hamiltonian. Europhys. Lett. 82, 10003 (2008)

    Article  Google Scholar 

  4. Barrio, R., Blesa, F., Serrano, S.: Bifurcations and safe regions in open Hamiltonians. N. J. Phys. 11, 053004-1–053004-12 (2009)

    Article  MathSciNet  Google Scholar 

  5. Benet, L., Trautman, D., Seligman, T.: Chaotic scattering in the restricted three-body problem. I. The Copenhagen problem. Celest. Mech. Dyn. Astron. 66, 203–228 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. Benet, L., Seligman, T., Trautman, D.: Chaotic scattering in the restricted three-body problem II. Small mass parameters. Celest. Mech. Dyn. Astron. 71, 167–189 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Berezovoj, V.P., Bolotin, Yu.L., Ivashkevych, G.I.: Geometrical approach for description of the mixed state in multi-well potentials. XIII International Seminar “Nonlinear Phenomena in Complex Systems”, Minsk, Belarus, May 16–19 (2006)

  8. Bishop, S.R., Clifford, M.J.: The use of manifold tangencies to predict orbits, bifurcations and estimate escape in driven systems. Chaos Solitons Fractals 7, 1537–1553 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bleher, S., Grebogi, C., Ott, E., Brown, R.: Fractal boundaries for exit in Hamiltonian dynamics. Phys. Rev. A 38, 930–938 (1988)

    Article  MathSciNet  Google Scholar 

  10. Bleher, S., Ott, E., Grebogi, C.: Routes to chaotic scattering. Phys. Rev. Lett. 63, 919–922 (1989)

    Article  Google Scholar 

  11. Bolotin, YuL, Cherkaskiy, V.A., Ivashkevych, G.I.: Over-barrier decay of a mixed state in 2D multiwell potentials. Ukr. J. Phys. 55, 838–847 (2010)

    Google Scholar 

  12. Churchill, R.C., et al.: In Como Conference Proceedings on Stochastic Behavior in Classical and Quantum Hamiltonian Systems. Casati, G., Fords, J (ed.) Lecture Notes in Physics, Vol. 93, Springer, Berlin, 76 (1979)

  13. Contopoulos, G.: Asymptotic curves and escapes in Hamiltonian systems. Astron. Astrophys. 231, 41–55 (1990)

    MathSciNet  Google Scholar 

  14. Contopoulos, G.: Order and Chaos in Dynamical Astronomy. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  15. Contopoulos, G., Kaufmann, D.: Types of escapes in a simple Hamiltonian system. Astron. Astrophys. 253, 379–388 (1992)

    MathSciNet  MATH  Google Scholar 

  16. Contopoulos, G., Kandrup, H.E., Kaufmann, D.: Fractal properties of escape from a two-dimensional potential. Phys. D 64, 310–323 (1993)

    Article  MATH  Google Scholar 

  17. Contopoulos, G., Harsoula, M., Lukes-Gerakopoulos, G.: Periodic orbits and escapes in dynamical systems. Celest. Mech. Dyn. Astron. 113, 255–278 (2012)

    Article  MathSciNet  Google Scholar 

  18. de Moura, A.P.S., Letelier, P.S.: Fractal basins in Hénon-Heiles and other polynomial potentials. Phys. Lett. A 256, 362–368 (1999)

    Article  MathSciNet  Google Scholar 

  19. de Moura, A.P.S., Grebogi, C.: Countable and uncountable boundaries in chaotic scattering. Phys. Rev. E 66, 046214 (2002)

    Article  MathSciNet  Google Scholar 

  20. Ernst, A., Peters, T.: Fractal basins of escape and the formation of spiral arms in a galactic potential with a bar. Mon. Not. R. Astron. Soc. 443, 2579–2589 (2014)

    Article  Google Scholar 

  21. Gonçalves, P.B., Silva, F.M.A., Del Prado, Z.J.G.N.: Global stability analysis of parametrically excited cylindrical shells through the evolution of basin boundaries. Nonlinear Dyn. 50, 121–145 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gonçalves, P.B., Silva, F.M.A., Rega, G., Lenci, S.: Global dynamics and integrity of a two-dof model of a parametrically excited cylindrical shell. Nonlinear Dyn. 63, 61–82 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hénon, M.: Numerical exploration of the restricted problem, V. Astron. Astrophys. 1, 223–238 (1969)

    MATH  Google Scholar 

  24. Jung, C., Lipp, C., Seligman, T.H.: The inverse scattering problem for chaotic Hamiltonian systems. Ann. Phys. 275, 151–189 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  25. Jung, C., Mejia-Monasterio, C., Seligman, T.H.: Scattering one step from chaos. Phys. Lett. A 198, 306–314 (1995)

    Article  Google Scholar 

  26. Jung, C., Tél, T.: Dimension and escape rate of chaotic scattering from classical and semiclassical cross section data. J. Phys. A 24, 2793–2805 (1991)

    Article  Google Scholar 

  27. Kalvouridis, T.J., Gousidou-Koutita, MCh.: Basins of attraction in the Copenhagen problem where the primaries are magnetic dipoles. Appl. Math. 3, 541–548 (2012)

    Article  Google Scholar 

  28. Kandrup, H.E., Siopis, C., Contopoulos, G., Dvorak, R.: Diffusion and scaling in escapes from two-degrees-of-freedom Hamiltonian systems. Chaos 9, 381–392 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kennedy, J., Yorke, J.A.: Basins of Wada. Phys. D 51, 213–225 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kumari, R., Kushvah, B.S.: Stability regions of equilibrium points in restricted four-body problem with oblateness effects. Astrophys. Space Sci. 349, 693–704 (2014)

    Article  Google Scholar 

  31. Lai, Y.-C., Tél, T.: Transient Chaos. Springer, New York (2011)

    Book  MATH  Google Scholar 

  32. Lyapunov, A.M.: Problème gènèral de las stabilitè de movement. Ann. Fac. Sci. Toulouse 9, 203–274 (1907)

  33. Navarro, J.F., Henrard, J.: Spiral windows for escaping stars. Astron. Astrophys. 369, 1112–1121 (2001)

  34. Poon, L., Campos, J., Ott, E., Grebogi, C.: Wada basins boundaries in chaotic scattering. Int. J. Bifurc. Chaos 6, 251–266 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  35. Press, H.P., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in FORTRAN 77, 2nd edn. Cambridge Univ. Press, Cambridge (1992)

    MATH  Google Scholar 

  36. Schneider, J., Tél, T., Neufeld, Z.: Dynamics of “leaking” Hamiltonian systems. Phys. Rev. E 66, 066218 (2002)

    Article  MathSciNet  Google Scholar 

  37. Schneider, J., Tél, T.: Extracting flow structures from tracer data. Ocean Dyn. 53, 64–72 (2003)

    Article  Google Scholar 

  38. Seoane, J.M., Aguirre, J., Sanjuán, M.A.F., Lai, Y.C.: Basin topology in dissipative chaotic scattering. Chaos 16, 023101-1–023101-8 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  39. Seoane, J.M., Sanjuán, M.A.F., Lai, Y.C.: Fractal dimension in dissipative chaotic scattering. Phys. Rev. E 76, 016208-1–016208-6 (2007)

    Article  Google Scholar 

  40. Seoane, J., Sanjuán, M.A.F.: Exponential decay and scaling laws in noisy chaotic scattering. Phys. Lett. A 372, 110–116 (2008)

    Article  MATH  Google Scholar 

  41. Skokos, C.: Alignment indices: a new, simple method for determining the ordered or chaotic nature of orbits. J. Phys. A Math. Gen. 34, 10029–10043 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  42. Stewart, H.B., Thompson, J.M.T., Ueda, Y., Lansbury, A.N.: Optimal escape from potential wells-patterns of regular and chaotic bifurcation. Phys. D Nonlinear Phenom. 85, 259–295 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  43. Sweet, D., Ott, E.: Fractal basin boundaries in higher-dimensional chaotic scattering. Phys. Lett. A 266, 134–139 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  44. Thompson, J.M.T.: Chaotic behavior triggering the escape from a potential well. Proc. R. Soc. Lond. A 421, 195–225 (1989)

    Article  MATH  Google Scholar 

  45. Tuval, I., Schneider, J., Piro, O., Tél, T.: Opening up fractal structures of three-dimensional flows via leaking. Europhys. Lett. 65, 633–639 (2004)

    Article  Google Scholar 

  46. Wolfram, S.: The Mathematica Book. Wolfram Media, Champaign (2003)

    MATH  Google Scholar 

  47. Zotos, E.E.: A Hamiltonian system of three degrees of freedom with eight channels of escape: the great escape. Nonlinear Dyn. 76, 1301–1326 (2014)

    Article  MathSciNet  Google Scholar 

  48. Zotos, E.E.: Escapes in Hamiltonian systems with multiple exit channels: part I. Nonlin. Dyn. 78, 1389–1420 (2014)

    Article  MathSciNet  Google Scholar 

  49. Zotos, E.E.: Revealing the escape mechanism of three-dimensional orbits in a tidally limited star cluster. MNRAS 446, 770–792 (2015)

    Article  Google Scholar 

  50. Zotos, E.E.: Escapes in Hamiltonian systems with multiple exit channels: part II. Nonlinear Dyn. 82, 357–398 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

I would like to express my warmest thanks to the four anonymous referees for the careful reading of the manuscript and for all the apt suggestions and comments which allowed us to improve both the quality and the clarity of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Euaggelos E. Zotos.

Ethics declarations

Funding

The author states that he has not received any research grants.

Conflict of interest

The author declares that he has no conflict of interest.

Appendix: Derivation of the multivariate Newton–Raphson iterative scheme

Appendix: Derivation of the multivariate Newton–Raphson iterative scheme

The multivariate Newton–Raphson method iterates over the recursive formula

$$\begin{aligned} \mathbf{{x}}_{n+1} = \mathbf{{x}}_{n} - J^{-1}f(\mathbf{{x}}_{n}), \end{aligned}$$
(14)

where \(J^{-1}\) is the inverse Jacobian matrix of \(f(\mathbf{{x}}_{n})\), while \(\mathbf{{x}}_{n}\) stands for the vector x at the n-th iteration. In our case the system of the equations is \(V_x = 0\) and \(V_y = 0\) and therefore the Jacobian matrix reads

$$\begin{aligned} J = \begin{bmatrix} V_{xx}&V_{xy} \\ V_{yx}&V_{yy} \end{bmatrix}. \end{aligned}$$
(15)

The inverse Jacobian is

$$\begin{aligned} J^{-1} = \frac{1}{\mathrm{{det}}(J)} \begin{bmatrix} V_{yy}&-V_{xy} \\ -V_{yx}&V_{xx} \end{bmatrix}, \end{aligned}$$
(16)

where \(\mathrm{{det}}(J) = V_{yy} V_{xx} - V_{xy}^2\).

Inserting the expression of the inverse Jacobian into the iterative formula (14), we get

$$\begin{aligned}&\begin{bmatrix} x \\ y \end{bmatrix} _{n+1}\nonumber \\&\quad = \begin{bmatrix} x \\ y \end{bmatrix} _{n} - \frac{1}{V_{yy} V_{xx} - V_{xy}^2} \begin{bmatrix} V_{yy}&-V_{xy} \\ -V_{yx}&V_{xx} \end{bmatrix} \begin{bmatrix} V_x \\ V_y \end{bmatrix} _{(x_n,y_n)} \nonumber \\&\quad = \begin{bmatrix} x \\ y \end{bmatrix} _{n} - \frac{1}{V_{yy} V_{xx} - V_{xy}^2} \begin{bmatrix} V_{yy}V_x - V_{xy}V_y \\ -V_{yx}V_x + V_{xx}V_y \end{bmatrix} _{(x_n,y_n)}.\nonumber \\ \end{aligned}$$
(17)

Decomposing formula (17) into x and y, we obtain the iterative formulae for each coordinate

$$\begin{aligned} x_{n+1}= & {} x_n - \left( \frac{V_x V_{yy} - V_y V_{xy}}{V_{yy} V_{xx} - V^2_{xy}} \right) _{(x_n,y_n)}, \nonumber \\ y_{n+1}= & {} y_n + \left( \frac{V_x V_{yx} - V_y V_{xx}}{V_{yy} V_{xx} - V^2_{xy}} \right) _{(x_n,y_n)}. \end{aligned}$$
(18)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zotos, E.E. Fractal basin boundaries and escape dynamics in a multiwell potential. Nonlinear Dyn 85, 1613–1633 (2016). https://doi.org/10.1007/s11071-016-2782-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-2782-5

Keywords

Navigation