Skip to main content
Log in

Soliton and soliton-like solutions to the modified Zakharov–Kuznetsov equation in nonlinear transmission line

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This work presents an analytical study of dynamic behaviors of solitons in the electrical transmission line. The nonlinear dynamical model that is the modified Zakharov–Kuznetsov equation with an external force is investigated. Via the Riccati equation mapping scheme, explicit twenty seven traveling wave solutions, which include periodic solutions, rational wave solution, soliton solutions as well as soliton-like solutions, are constructed for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Duan, W.S.: Nonlinear waves propagating in the electrical transmission line. Europhys. Lett. 66, 192 (2004)

    Article  Google Scholar 

  2. Zhen, H.L., Tian, B., Zhong, H., Jiang, Y.: Dynamic behaviors and soliton solutions of the modified Zakharov–Kuznetsov equation in the electrical transmission line. Comput. Math. Appl. 68(5), 579 (2014)

    Article  Google Scholar 

  3. Sardar, A., Husnine, S.M., Rizvi, S.T.R., Younis, M., Ali, K.: Multiple travelling wave solutions for electrical transmission line model. Nonlinear Dyn. (2015). doi:10.1007/s11071-015-2240-9

  4. Krishnan, E.V., Biswas, A.: Solutions to the Zakharov–Kuznetsov equation with higher order nonlinearity by mapping and ansatz methods. Phys. Wave Phenom. 18(4), 256 (2010)

    Article  Google Scholar 

  5. Biswas, A., Zerrad, E.: 1-soliton solution of the Zakharov–Kuznetsov equation with dual-power law nonlinearity. Commun. Nonlinear Sci. Numer. Simul. 14(9), 3574 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bhrawy, A.H., Abdelkawy, M.A., Kumar, S., Johnson, S., Biswas, A.: Solitons and other solutions to quantum Zakharov–Kuznetsov equation in quantum magneto-plasmas. Indian J. Phys. 87(5), 455 (2013)

    Article  Google Scholar 

  7. Biswas, A.: 1-soliton solution of the generalized Zakharov–Kuznetsov modified equal width equation. Appl. Math. Lett. 22(11), 1775 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Yang, Z.P., Zhong, W.P., Belić, M.: 2D optical rogue waves in self-focusing Kerr-type media with spatially modulated coefficients. Laser Phys. 25(8), 085402 (2015)

    Article  Google Scholar 

  9. Wazwaz, A.M.: The extended tanh method for the Zakharov–Kuznetsov (ZK) equation, the modified ZK equation, and its generalized forms. Commun. Nonlinear Sci. Numer. Simul. 13(6), 1039 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Wazwaz, A.M.: Nonlinear dispersive special type of the Zakharov–Kuznetsov equation ZK (n, n) with compact and noncompact structures. Appl. Math. Comput. 161(2), 577 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Wazwaz, A.M.: Solitary waves solutions for extended forms of quantum Zakharov–Kuznetsov equations. Phys. Scr. 85(2), 025006 (2012)

    Article  Google Scholar 

  12. Wang, G.W., Xu, T.Z., Johnson, S., Biswas, A.: Solitons and Lie group analysis to an extended quantum Zakharov–Kuznetsov equation. Astrophys. Space Sci. 349(1), 317 (2014)

    Article  Google Scholar 

  13. Ebadi, G., Mojaver, A., Milovic, D., Johnson, S., Biswas, A.: Solitons and other solutions to the quantum Zakharov–Kuznetsov equation. Astrophys. Space Sci. 341(2), 507 (2012)

    Article  MATH  Google Scholar 

  14. Qu, Q.X., Tian, B., Liu, W.J., Sun, K., Wang, P., Jiang, Y., Qin, B.: Soliton solutions and interactions of the Zakharov–Kuznetsov equation in the electron–positron-ion plasmas. Eur. Phys. J. D 61(3), 709 (2011)

    Article  Google Scholar 

  15. Triki, H., Yildirim, A., Hayat, T., Aldossary, O.M., Biswas, A.: Topological and non-topological soliton solutions of the Bretherton equation. Proc. Rom. Acad. Ser. A 13(2), 103 (2012)

    MathSciNet  Google Scholar 

  16. Triki, H., Crutcher, S., Yildirim, A., Hayat, T., Aldossary, O.M., Biswas, A.: Bright and dark solitons of the modified complex Ginzburg Landau equation with parabolic and dual-power law nonlinearity. Rom. Rep. Phys. 64(2), 367 (2012)

  17. Biswas, A.: 1-Soliton solution of the K (m, n) equation with generalized evolution and time-dependent damping and dispersion. Comput. Math. Appl. 59(8), 2536 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Biswas, A., Zony, C., Zerrad, E.: Soliton perturbation theory for the quadratic nonlinear Klein–Gordon equation. Appl. Math. Comput. 203(1), 153 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ebadi, G., Fard, N.Y., Bhrawy, A.H., Kumar, S., Triki, H., Yildirim, A., Biswas, A.: Solitons and other solutions to the (3+1)-dimensional extended Kadomtsev–Petviashvili equation with power law nonlinearity. Rom. Rep. Phys. 65(1), 27 (2013)

    Google Scholar 

  20. Biswas, A., Milovic, D., Ranasinghe, A.: Solitary waves of Boussinesq equation in a power law media. Commun. Nonlinear Sci. Numer. Simul. 14(11), 3738 (2009)

    Article  MATH  Google Scholar 

  21. Bhrawy, A.H., Abdelkawy, M.A., Biswas, A.: Cnoidal and snoidal wave solutions to coupled nonlinear wave equations by the extended Jacobi’s elliptic function method. Commun. Nonlinear Sci. Numer. Simul. 18(4), 915 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Bhrawy, A.H., Biswas, A., Javidi, M., Ma, W.X., Pinar, Z., Yildirim, A.: New solutions for (1+1)-dimensional and (2+1)-dimensional Kaup–Kupershmidt equations. Results Math. 63(1–2), 675 (2013)

  23. Bhrawy, A.H., Abdelkawy, M.A., Biswas, A.: Topological solitons and cnoidal waves to a few nonlinear wave equations in theoretical physics. Indian J. Phys. 87(11), 1125 (2013)

    Article  Google Scholar 

  24. Bhrawy, A.H., Abdelkawy, M.A., Kumar, S., Biswas, A.: Solitons and other solutions to Kadomtsev–Petviashvili equation of B-type. Rom. J. Phys. 58(7–8), 729 (2013)

    MathSciNet  Google Scholar 

  25. Biswas, A., Bhrawy, A.H., Abdelkawy, M.A., Alshaery, A.A., Hilal, E.M.: Symbolic computation of some nonlinear fractional differential equations. Rom. J. Phys. 59(5–6), 433 (2014)

    Google Scholar 

  26. Triki, H., Kara, A.H., Bhrawy, A.H., Biswas, A.: Soliton solution and conservation law of Gear–Grimshaw model for shallow water waves. Acta Phys. Pol. A 125(5), 1099 (2014)

    Article  Google Scholar 

  27. Triki, H., Mirzazadeh, M., Bhrawy, A.H., Razborova, P., Biswas, A.: Solitons and other solutions to long-wave short-wave interaction equation. Rom. J. Phys. 60(1–2), 72 (2015)

    Google Scholar 

  28. Mirzazadeh, M., Eslami, M., Bhrawy, A.H., Biswas, A.: Integration of complex-valued Klein–Gordon equation in \(\Phi \)-4 field theory. Rom. J. Phys. 60(3–4), 293 (2015)

  29. Bekir, A., Guner, O., Bhrawy, A.H., Biswas, A.: Solving nonlinear fractional differential equations using exp-function and (G’/G)-expansion methods. Rom. J. Phys. 60(3–4), 360 (2015)

    Google Scholar 

  30. Bhrawy, A.H.: An efficient Jacobi pseudospectral approximation for nonlinear complex generalized Zakharov system. Appl. Math. Comput. 247, 30 (2014)

    Article  MathSciNet  Google Scholar 

  31. Bhrawy, A.H., Abdelkawy, M.A.: A fully spectral collocation approximation for multi-dimensional fractional Schrödinger equations. J. Comput. Phys. 294, 462 (2015)

    Article  MathSciNet  Google Scholar 

  32. Bhrawy, A.H.: A highly accurate collocation algorithm for 1+1 and 2+1 fractional percolation equations. J. Vib. Control (2015). doi:10.1177/1077546315597815

  33. Doha, E.H., Bhrawy, A.H., Abdelkawy, M.A., Van Gorder, R.A.: Jacobi–Gauss–Lobatto collocation method for the numerical solution of 1+1 nonlinear Schrödinger equations. J. Comput. Phys. 261, 244 (2014)

  34. Bhrawy, A.H., Zaky, M.A.: Numerical simulation for two-dimensional variable-order fractional nonlinear cable equation. Nonlinear Dyn. 80(1–2), 101 (2015)

    Article  MathSciNet  Google Scholar 

  35. Zhou, Q.: Analytical solutions and modulation instability analysis to the perturbed nonlinear Schrödinger equation. J. Mod. Opt. 61(6), 500 (2014)

    Article  Google Scholar 

  36. Zhou, Q., Yao, D., Ding, S., Zhang, Y., Chen, F., Chen, F., Liu, X.: Spatial optical solitons in fifth order and seventh order weakly nonlocal nonlinear media. Optik 124(22), 5683 (2013)

    Article  Google Scholar 

  37. Zhou, Q.: Optical solitons in the parabolic law media with high-order dispersion. Optik 125(18), 5432 (2014)

    Article  Google Scholar 

  38. Guo, R., Liu, Y.F., Hao, H.Q., Qi, F.H.: Coherently coupled solitons, breathers and rogue waves for polarized optical waves in an isotropic medium. Nonlinear Dyn. 80(3), 1221 (2015)

    Article  MathSciNet  Google Scholar 

  39. Liu, W.J., Pang, L.H., Wong, P., Lei, M., Wei, Z.Y.: Dynamic solitons for the perturbed derivative nonlinear Schrödinger equation in nonlinear optics. Laser Phys. 25(6), 065401 (2015)

    Article  Google Scholar 

  40. Zhou, Q., Liu, L., Liu, Y., Yu, H., Yao, P., Wei, C., Zhang, H.: Exact optical solitons in metamaterials with cubic-quintic nonlinearity and third-order dispersion. Nonlinear Dyn. 80(3), 1365 (2015)

    Article  Google Scholar 

  41. Zhu, S.D.: The generalizing Riccati equation mapping method in non-linear evolution equation: application to (2+1)-dimensional Boiti–Leon–Pempinelle equation. Chaos Solitons Fractals 37(5), 1335 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  42. Malwe, B.H., Betchewe, G., Doka, S.Y., Kofane, T.C.: Travelling wave solutions and soliton solutions for the nonlinear transmission line using the generalized Riccati equation mapping method. Nonlinear Dyn. (2015). doi:10.1007/s11071-015-2318-4

  43. Zhou, Q., Zhu, Q.: Optical solitons in medium with parabolic law nonlinearity and higher order dispersion. Waves Random Complex Media 25(1), 52 (2015)

    Article  Google Scholar 

  44. Biswas, A., Mirzazadeh, M., Savescu, M., Milovic, D., Khan, K.R., Mahmood, M.F., Belic, M.: Singular solitons in optical metamaterials by ansatz method and simplest equation approach. J. Mod. Opt. 61(19), 1550 (2014)

    Article  Google Scholar 

  45. Kong, L.Q., Dai, C.Q.: Some discussions about variable separation of nonlinear models using Riccati equation expansion method. Nonlinear Dyn. 81(3), 1553 (2015)

    Article  MathSciNet  Google Scholar 

  46. Kudryashov, N.A., Dimitrova, Z.I., Kantz, H.: Application of the method of simplest equation for obtaining exact traveling-wave solutions for the extended Korteweg-de Vries equation and generalized Camassa–Holm equation. Appl. Math. Comput. 219, 7480 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported by the Program for Outstanding Young and Middle-aged Scientific and Technological Innovation Team of the Higher Education Institutions of Hubei Province of China under the Grant Number T201525.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qin Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Q. Soliton and soliton-like solutions to the modified Zakharov–Kuznetsov equation in nonlinear transmission line. Nonlinear Dyn 83, 1429–1435 (2016). https://doi.org/10.1007/s11071-015-2415-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2415-4

Keywords

Navigation