Skip to main content
Log in

Analysis and implementation of a novel robust transmission scheme for private digital communications using Arduino Uno board

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we present a new scheme for the secured transmission of discrete information based on hyperchaotic discrete dynamics. The system is a modified-Henon hyperchaotic discrete-time oscillator considered as transmitter and a delayed step-by-step observer used as receiver. The transmitter parameters play the role of secret keys of the transmission scheme. To increase the robustness of the secure data transmission against known plain-text attacks, the message to be sent is encrypted by additional secret keys and inserted by inclusion method in the chaotic discrete-time system dynamics. By this way, the parameters used as secret keys cannot be identified with usual techniques. Simulation results are presented to highlight the performances of the proposed method. One of the main contributions of this paper is to demonstrate the feasibility of discrete realization of a chaotic observer-based secured transmission scheme. Indeed, experimental implementation results using Arduino Uno board validate the proposed approach, since it exhibits good performances of throughput and cost in terms of resources used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Pecora, L.M., Carroll, T.L.: Synchronization in chaotic Systems. Phys. Rev. Lett. 64(8), 821–824 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  2. Kocarev, L., Parlitz, U.: General approach for chaotic synchronization with application to communication. Phys. Rev. Lett. 74(25), 502831 (1995)

    Article  Google Scholar 

  3. Hamiche, H., Ghanes, M., Barbot, J.P., Kemih, K., Djennoune, S.: Hybrid dynamical systems for private digital communications. Int. J. Model. Identif. Control. 20(2), 99–113 (2013)

    Article  Google Scholar 

  4. Dimassi, H., Lori’a, A., Belghith, S.: A new secured scheme based on chaotic synchronization via smooth adaptive unknown-input observe. Commun. Nonlinear Sci. Numer. Simul. 17(9), 3727–3739 (2012)

    Article  MATH  Google Scholar 

  5. Djemaï, M., Barbot, J.P., Boutat, D.: New type of data transmission using a synchronization of chaotic systems. Int. J. Bifurc. Chaos (15)(1), 207223 (2005)

    Google Scholar 

  6. Wang, H., Han, Z.Z., MoCommun, Z.: Synchronization of hyperchaotic systems via linear control. Commun. Nonlinear. Sci. Numer. Simul. 15(7), 19101920 (2010)

    Article  MATH  Google Scholar 

  7. Park, JuH: Chaos synchronization of a chaotic system via nonlinear control. Chaos Solitons Fractals 25(3), 579584 (2005)

    Google Scholar 

  8. Han, X., Lu, J.A., Wu, X.: Adaptive feedback synchronization of L? system. Chaos Soliton Fractals 22(1), 221–227 (2004)

    Article  MathSciNet  Google Scholar 

  9. Hamiche, H., Kemih, K., Ghanes, M., Zhang, G., Djennoune, S.: Passive and impulsive synchronization of a new four-dimensional chaotic system. Nonlinear Anal. Theory Methods Appl. 74(4), 1146–1154 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Yang, T., Chua, L.O.: Impulsive stabilization for control and synchronization of chaotic systems: theory and application to secure communication. IEEE. Trans. Circuits Syst. I Fundam. Theory. Appl. 44(10), 976–978 (1997)

    Article  MathSciNet  Google Scholar 

  11. Nijijmeiyer, H., Marrels, Iven M.Y.: An observation looks at synchronization. IEEE. Trans. Circuits Syst. I Fundam. Theory. Appl. 44(10), 882–890 (1999)

    Article  Google Scholar 

  12. Gao, T., Chen, G., Yuan, Y.Z., Chen, G.: A hyperchaos generated from Chen’s system. Int. J. Modern Phys. C. 17(4), 471 (2006)

  13. Filali, R.L., Benrejeb, M., Borne, P.: On observer-based secure communication design using discrete-time hyperchaotic systems. Commun. Nonlinear Sci. Num. Simul. 19(5), 1424–1432 (2014)

    Article  MathSciNet  Google Scholar 

  14. Blakely, J.N., Eskridge, M.B., Corron, N.J.: A simple Lorenz circuit and its radio frequency implementation. Chaos 17(2), 023112 (2007)

    Article  Google Scholar 

  15. Qi, G., Chen, G.: Analysis and circuit implementation of a new \(4D\) chaotic system. Phys. Lett. A 352(4–5), 386–397 (2006)

    Article  MATH  Google Scholar 

  16. Huang, C.K., Tsay, S.C., Wu, Y.R.: Implementation of chaotic secure communication systems based on OPA circuits. Chaos Solitons Fractals 23(2), 589–600 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Mora-Gonzalez, M.: Implementation of a chaotic oscillator into a simple microcontroller. International. Conference. Electronic. Engineering. Computer. Science., IERI Procedia 4, 247–252 (2013)

    MATH  Google Scholar 

  18. Volos, C.K.: Chaotic random bit generator realized with a microcontroller. J. Comput. Model. 3(4), 115–136 (2013)

    Google Scholar 

  19. Zuppa, L.A.: Chaotic logistic map implementation in the PIC12F629 microcontroller unit. 10th IFAC Workshop on Programmable Devices and Embedded Systems, 10(1), Poland, (2010)

  20. Aboul-Seoud, A.K., El-Badawy, E.-S.A., Mokhtar, A., El-Masry, W., El-Barbry, M.: A simple 8-bit digital microcontroller implementation for chaotic sequence generation. Radio Sci. Conf. 1–9 (2011)

  21. Ponomarenko, V.I., Prokhorov, M.D., karavaev, A.S., Kulminskiy, D.D.: An experimental digital communication scheme based on chaotic time delay system. Nonlinear Dyn. 74(4), 1013–1020 (2013)

    Article  MathSciNet  Google Scholar 

  22. Koyuncu, I., Ozcerit, A.T., Pehlivan, I.: Implementation of FPGA-based real time novel chaotic oscillator. Nonlinear Dyn. 77(1–2), 49–59 (2014)

    Article  MathSciNet  Google Scholar 

  23. Veselyand, K., Podolsky, J.: Chaos in a modified Henon–Heiles system describing geodesics in gravitational waves. Tech. Phys. Lett A 271, 368–371 (2000)

    Article  Google Scholar 

  24. Belmouhoub, I., Djemaï, M., Barbot, J.P.: Observability quadratic Normal Form for Discrete-Time systems. IEEE. Trans. Autom. Control. 50, (2005)

  25. Djemaï, M., Barbot, J.P., Belmouhoub, I.: Discrete-time normal form for left invertibility problem. Eur. J. Control 15, 194–204 (2009)

    Article  MathSciNet  Google Scholar 

  26. Kharel, R., Busawon, K., Ghassemlooy, Z.: A novel chaotic encryption technique for secure communication. 2nd IFAC Conference on Analysis and Control of Chaotic Systems (2009)

  27. Arduino. www.arduino.cc

  28. Datasheet ATMega328. www.alldatasheet.com

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Hamiche.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamiche, H., Guermah, S., Saddaoui, R. et al. Analysis and implementation of a novel robust transmission scheme for private digital communications using Arduino Uno board. Nonlinear Dyn 81, 1921–1932 (2015). https://doi.org/10.1007/s11071-015-2116-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2116-z

Keywords

Navigation