Skip to main content
Log in

Nonlinear analysis of 2D flexible flapping wings

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Natural flyers have flexible wings, which deform significantly under the combined inertial and aerodynamic forces. In this study, we focus on the role of chord wise flexibility in 2D pitch and plunge motions. We derive the exact nonlinear 2D equations of motion for a flexible flapping wing with flying support. In achieving the closed-form equations, we use the exact strain field concerning considerable elastic deformations. After numerically solving the novel equations, we validate them in simulations with highly deformable wings. By coupling the derived equations of motion with fluid flow, we study the aerodynamic performance of the geometrically nonlinear flexible flapping wing. Through numerical simulations, we see that a flexible wing generates much lower drag with increasing flexibility. While at angles of attack \(>\) \(50^{\circ }\), more lift is generated by flexible wings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Dickinson, M.H.: Bionics: biological insight into mechanical design. Proc. Nat. Acad. Sci. USA 96(25), 14208–14209 (1999)

    Article  Google Scholar 

  2. Hedrick, T.L., Cheng, B., Deng, X.: Wingbeat time and the scaling of passive rotational damping in flapping flight. Science 234, 252–255 (2009)

    Article  Google Scholar 

  3. Lasek, M., Pietrucha, J., Sibilski, K., Zlocka, M.: A study of flight dynamics and automatic control of an animalopter. ICAS 2002 Congress 553, 1–8 (2002)

    Google Scholar 

  4. Liang, B., Sun, M.: Nonlinear flight dynamics and stability of hovering model insects. J. R. Soc. Interface 10(85), 20130269 (2013)

  5. Taha, H.E., Hajj, M.R., Nayfeh, A.H.: Flight dynamics and control of flapping-wing mavs: a review. Nonlinear Dyn. 70(2), 907–939 (2012)

    Article  MathSciNet  Google Scholar 

  6. Ma, K.Y., Chirarattananon, P., Fuller, S.B., Wood, R.J.: Controlled flight of a biologically inspired, insect-scale robot. Science 340(6132), 603–607 (2013)

    Article  Google Scholar 

  7. Daniel, T.L., Combes, S.A.: Flexible wings and fins: bending by inertial or fluid-dynamic forces. Integr. Comp. Biol. 42, 1044–1049 (2002)

    Article  Google Scholar 

  8. Lin, C.S., Hwu, C., Young, W.B.: The thrust and lift of an ornithopters membrane wings with simple flapping motion. Aerosp. Sci. Technol. 10, 111–119 (2006)

    Article  Google Scholar 

  9. Usherwood, J.R., Hedrick, T.L., McGowan, C.P., Biewener, A.A.: Dynamic pressure maps for wings and tails of pigeons in slow, flapping flight, and their energetic implications. J. Exp. Biol. 208, 355–369 (2005)

    Article  Google Scholar 

  10. Zhu, J., Zhou, C., Wang, C., Jiang, L.: Effect of flexibility on flapping wing characteristics under forward flight. Fluid Dyn. Res. 46(5), 055515 (2014)

    Article  MathSciNet  Google Scholar 

  11. Dickinson, M.H., Lehmann, F.O., Sane, S.P.: Wing rotation and the aerodynamic basis of insect flight. Science 284, 1954–1960 (1999)

    Article  Google Scholar 

  12. Taha, H.E., Tahmasian, S., Woolsey, C.A., Nayfeh, A.H., Hajj, M.R.: The need for higher-order averaging in the stability analysis of hovering, flapping-wing flight. Bioinspir. Biomim. 10(1), 016,002 (2015)

    Article  Google Scholar 

  13. Wu, J.H., Zhang, Y.L., Sun, M.: Hovering of model insects: simulation by coupling equations of motion with navier-stokes equations. J. Exp. Biol. 212(20), 3313–3329 (2009)

    Article  Google Scholar 

  14. Ifju, P.G., Jenkins, D.A., Ettinger, S., Lian, Y., Shyy, W.: Flexible-wing-based micro air vehicles. AIAA (2002-0705), 1–13 (2002)

  15. Raney, D.L., Waszak, M.R.: Biologically inspired micro-flight research. SAE Trans. 112(1), 598–610 (2003)

    Google Scholar 

  16. Tamai, M., Murphy, J.T., Hu, H.: An experimental study of flexible membrane airfoils at low reynolds numbers. AIAA 46th Aerospace Sciences Meeting and Exhibit AIAA-2008-0580, 1–12 (2008)

  17. Heathcote, S., Wang, Z., Gursul, I.: Effect of spanwise flexibility on flapping wing propulsion. J. Fluids Struct. 24(2), 183–199 (2008)

    Article  Google Scholar 

  18. Tian, F.B., Luo, H., Song, J., Lu, X.Y.: Force production and asymmetric deformation of a flexible flapping wing in forward flight. J. Fluids Struct. 36, 149–161 (2013)

    Article  Google Scholar 

  19. Kang, C., Shyy, W.: Analytical model for instantaneous lift and shape deformation of an insect-scale flapping wing in hover. J. R. Soc. Interface 11(101), 20140,933 (2014)

    Article  Google Scholar 

  20. Cho, H., Kwak, J., Shin, S.: Computational analysis for flapping wing by coupling the geometrically exact beam and preconditioned Navier-stokes solution. The 55th AIAA/ASME/ASCE/AHS/SC Structures, Structural Dynamics, and Materials Conference, National Harbor, 13–17 Jan 2014

  21. Lacarbonara, W., Yabuno, H.: Refined models of elastic beams undergoing large in-plane motions: theory and experiment. Int. J. Solids Struct. 43(17), 5066–5084 (2006)

    Article  MATH  Google Scholar 

  22. Nayfeh, A.H., Pai, P.F.: Linear and Nonlinear Structural Mechanics. Wiley, Hoboken, New Jersey (2004)

    Book  MATH  Google Scholar 

  23. Abedinnasab, M., Zohoor, H., Yoon, Y.: Exact formulations of non-linear planar and spatial Euler–Bernoulli beams with finite strains. Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci. 226(5), 1225–1236 (2012)

    Article  Google Scholar 

  24. Liao, S.: Beyond Perturbation: Introduction to the Homotopy Analysis Method. CRC Press, Boca Raton (2004)

    Google Scholar 

  25. Abedinnasab, M.H., Hussein, M.I.: Wave dispersion under finite deformation. Wave motion 50(3), 374–388 (2013)

    Article  MathSciNet  Google Scholar 

  26. COMSOL Multiphysics 4.2.: COMSOL Inc., Palo Alto, CA (2011)

  27. Neef, M., Hummel, D.: Euler solutions for a finite-span flapping wing. In: Fixed, flapping and rotary vehicles at very low Reynolds Numbers, Proceedings of the Conference, Notre Dame, IN, pp. 75–99 (2000)

  28. Donea, J., Huerta, A., Ponthot, J.-P., Rodríguez-Ferran, A.: Arbitrary Lagrangian–Eulerian methods. The Encyclopedia of Computational Mechanics. Wiley, New York (2004)

  29. Schenk, O., Gärtner, K.: Solving unsymmetric sparse systems of linear equations with pardiso. Future Gener. Comput. Syst. 20(3), 475–487 (2004)

    Article  Google Scholar 

  30. Taira, K., Colonius, T.: Three-dimensional flows around low-aspect-ratio flat-plate wings at low reynolds numbers. J. Fluid Mech. 623, 187–207 (2009)

    Article  MATH  Google Scholar 

  31. Madangopal, R., Khan, Z.A., Agrawal, S.K.: Biologically inspired design of small flapping wing air vehicles using four-bar mechanisms and quasi-steady aerodynamics. ASME J. Mech. Des. 127, 809–816 (2005)

    Article  Google Scholar 

  32. Bungartz, H.J., Mehl, M., Schäfer, M.: Fluid Structure Interaction II: Modelling, Simulation, Optimization, vol. 73. Springer, Berlin (2010)

  33. Zhao, L., Huang, Q., Deng, X., Sane, S.P.: Aerodynamic effects of flexibility in flapping wings. J. R. Soc. Interface 7, 485–497 (2009)

    Article  Google Scholar 

  34. Mazaheri, K., Ebrahimi, A.: Experimental investigation of the effect of chordwise flexibility on the aerodynamics of flapping wings in hovering flight. J. Fluids Struct. 26, 544–558 (2010)

    Article  Google Scholar 

  35. Hamamoto, M., Ohta, Y., Hisada, T.: A fundamental study of wing actuation for a 6-in-wingspan flapping microaerial vehicle. IEEE Trans. Robot. 26(2), 244–255 (2010)

    Article  Google Scholar 

  36. Shyy, W., et al.: Computational aerodynamics of low reynolds number plunging, pitching and flexible wings for MAV applications. Acta Mech. Sin. 24, 351–373 (2008)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad H. Abedinnasab.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abedinnasab, M.H., Zohoor, H. & Yoon, YJ. Nonlinear analysis of 2D flexible flapping wings. Nonlinear Dyn 81, 299–310 (2015). https://doi.org/10.1007/s11071-015-1992-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-1992-6

Keywords

Navigation