Skip to main content
Log in

Computational aerodynamics of low Reynolds number plunging, pitching and flexible wings for MAV applications

  • Review Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Micro air vehicles (MAV’s) have the potential to revolutionize our sensing and information gathering capabilities in environmental monitoring and homeland security areas. Due to the MAV’s’ small size, flight regime, and modes of operation, significant scientific advancement will be needed to create this revolutionary capability. Aerodynamics, structural dynamics, and flight dynamics of natural flyers intersects with some of the richest problems in MAV’s, including massively unsteady three-dimensional separation, transition in boundary layers and shear layers, vortical flows and bluff body flows, unsteady flight environment, aeroelasticity, and nonlinear and adaptive control are just a few examples. A challenge is that the scaling of both fluid dynamics and structural dynamics between smaller natural flyer and practical flying hardware/lab experiment (larger dimension) is fundamentally difficult. In this paper, we offer an overview of the challenges and issues, along with sample results illustrating some of the efforts made from a computational modeling angle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shyy W., Lian Y., Tang J., Viieru D., Liu H.: Aerodynamics of Low Reynolds Number Flyers. Cambridge University Press, New York (2008)

    Google Scholar 

  2. Wakeling J.M, Ellington C.P.: Dragonfly flight. I. Gliding flight and steady-state aerodynamic forces. J. Exp. Biol. 200, 543–556 (1997)

    Google Scholar 

  3. http://turbulence.kmip.net/

  4. Platzer M., Jones K.D. (2006) Flapping wing aerodynamics—progress and challenges. In: 44th AIAA Aerospace Sciences Meeting and Exhibit, Paper No. 2006-500

  5. Liu H., Kawachi K.: A numerical study of insect flight. J. Comp. Phys. 146, 124–156 (1998)

    Article  MATH  Google Scholar 

  6. Ramamurti R., Sandberg W.C.: A three-dimensional computational study of the aerodynamic mechanisms of insect flight. J. Exp. Biol. 205, 1507–1518 (2002)

    Google Scholar 

  7. Lian, Y., Shyy, W.: Aerodynamics of Low Reynolds Number Plunging Airfoil under Gusty Environment. AIAA Paper 2007-71 (2007)

  8. Ellington C.P., Vanden Berg C., Willmott A.P., Thomas A.L.R.: Leading-edge vortices in insect flight. Nature 384, 626–630 (1996)

    Article  Google Scholar 

  9. Vanden Berg C., Ellington C.P.: The three-dimensional leading-edge vortex of a ‘hovering’ model hawkmoth. Philosophical Trans. R. Soc. Lond. Ser. B 352, 329–340 (1997)

    Article  Google Scholar 

  10. Srygley R.B., Thomas A.L.R.: Unconventional lift-generating mechanisms in free-flying butterflies. Nature 420, 660–664 (2002)

    Article  Google Scholar 

  11. Thomas A.L.R., Taylor G.K., Srygley R.B., Nudds L.R., Bomphrey R.J.: Dragonfly flight: free-flight and tethered flow visualizations reveal a diverse array of unsteady lift-generating mechanisms, controlled primarily via angle of attack. J. Exp. Biol. 207, 4299–4323 (2004)

    Article  Google Scholar 

  12. Birch J.M., Dickinson M.H.: Spanwise flow and the attachment of the leading-edge vortex on insect wings. Nature 412, 729–733 (2001)

    Article  Google Scholar 

  13. Zbikowski R.: On aerodynamic modelling of an insect-like flapping wing in hover for micro air vehicles. Philos Trans. R. Soc. Lond. Ser. A 360, 273–290 (2002)

    Article  Google Scholar 

  14. McCroskey, W.J., McAlister, K.W., Carr, L.W., Pucci, S.L.: An experimental study of dynamic stall on advanced airfoil section. NASA TM-84245 (1982)

  15. De Vries O.: On the theory of the horizontal-axis wind turbine. Ann. Rev. Fluid Mech. 15, 77–96 (1983)

    Article  Google Scholar 

  16. McCroskey W.J., Carr L.W., McAlister K.W.: Dynamic stall experiments on oscillating airfoils. AIAA J. 14, 57–63 (1976)

    Article  Google Scholar 

  17. Shyy W., Liu H.: Flapping wings and aerodynamic lift: the role of leading-edge vortices. AIAA J. 45, 2817–2819 (2007)

    Article  Google Scholar 

  18. Dickinson M.H., Göz K.G.: Unsteady aerodynamic performance of model wings at low Reynolds numbers. J. Exp. Biol. 174, 5–64 (1993)

    Google Scholar 

  19. Ellington C.P., van den Berg C., Willmott A.P., Thomas A.L.R.: Leading-edge vortices in insect flight. Nature 384, 626–630 (1996)

    Article  Google Scholar 

  20. Lehmann F.O.: The mechanisms of lift enhancement in insect flight. Naturwissenschaften 91, 101–122 (2004)

    Article  Google Scholar 

  21. Viieru, D., Tang, J., Lian, Y., Liu, H., Shyy, W.: Flapping and flexible wing aerodynamics of low reynolds number flight vehicles. In: 44th AIAA Aerospace Sciences Meeting and Exhibit. AIAA Paper 2006-0503 (2006)

  22. Visbal M.R., Gordnier R.E.: Numerical simulation of the interaction of a transitional boundary layer with a 2-d flexible panel in the subsonic regime. J. Fluids Struct. 19(7), 881–903 (2004)

    Article  Google Scholar 

  23. Yuan, W., Khalid, M., Windte, J., Scholz, U., Radespiel, R.: An investigation of low-Reynolds-number flows past airfoils. AIAA Paper 2005-4607 (2005)

  24. Lian, Y., Shyy, W.: Laminar-turbulent transition of a low Reynolds number rigid or flexible airfoil. AIAA Paper 2006-3051 (2006)

  25. Radespiel, R., Windte, J., Scholz, U.: Numerical and experimental flow analysis of moving airfoil with laminar separation bubbles. AIAA Paper 2006-0501 (2006)

  26. Ol, M., McAuliffe, B.R., Hanff, E.S., Scholz, U., Kaehler, Ch.: Comparison of laminar separation bubble measurements on a low Reynolds number airfoil in three facilities. AIAA Paper 2005-5149 (2005)

  27. Shyy W., Berg M., Ljungqvist D.: Flapping and flexible wings for biological and micro air vehicles. Prog. Aerosp. Sci. 35, 155–205 (1999)

    Article  Google Scholar 

  28. Shyy W., Ifju P.G., Viieru D.: Membrane wing-based micro air vehicles. Appl. Mech. Rev. 58, 283–301 (2005)

    Article  Google Scholar 

  29. Combes S.A., Daniel T.L.: Flexural stiffness in insect wings I. scaling and the influence of wing venation. J. Exp. Biol. 206, 2979–2987 (2003)

    Article  Google Scholar 

  30. Heathcote, S., Gursul, I.: Flexible flapping airfoil propulsion at low Reynolds numbers. AIAA Paper 2005-1405 (2005)

  31. Tang, J., Viieru, D., Shyy, W.: A study of aerodynamics of low Reynolds number flexible airfoils. AIAA Paper 2007-4212 (2007)

  32. Argentina M., Mahadevan L.: Fluid-flow-induced flutter of a flag. Proc. Natl. Acad. Sci. Appl. Math. 102(6), 1829–1834 (2005)

    Article  Google Scholar 

  33. Stanford B., Sytsma M., Albertani R., Viieru D., Shyy W., Ifju P.: Static aeroelastic model validation of membrane micro air vehicle wings. AIAA J. 45(12), 2828–2837 (2007)

    Article  Google Scholar 

  34. Lian, Y.: Membrane and adaptively-shaped wings for micro air vehicles. Ph.D. thesis, University of Florida, Gainesville (2003)

  35. Lian Y., Shyy W., Viieru D., Zhang B.: Membrane wing aerodynamics for micro air vehicles. Prog. Aerosp. Sci. 39, 425–465 (2003)

    Article  Google Scholar 

  36. Hepperle, M.: Aerodynamics of spar and rib structures. MH AeroTools Online Database. http://www.mh-aerotools.de/airfoils/ribs.htm (2007)

  37. Tang J., Zhu K.: Numerical and experimental study of flow structure of low-aspect ratio wing. J. Aircr. 41(5), 1196–1201 (2004)

    Article  Google Scholar 

  38. Ormiston R.: Theoretical and experimental aerodynamics of the sail wing. J. Aircr. 8(2), 77–84 (1971)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Shyy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shyy, W., Lian, Y., Tang, J. et al. Computational aerodynamics of low Reynolds number plunging, pitching and flexible wings for MAV applications. Acta Mech Sin 24, 351–373 (2008). https://doi.org/10.1007/s10409-008-0164-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-008-0164-z

Keywords

Navigation