Skip to main content
Log in

Basins of coexisting multi-dimensional tori in a vibro-impact system

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Based on the method of Poincaré mapping under cell reference, we describe basins of attraction for coexisting multi-dimensional tori attractors in a three-degree-of-freedom vibro-impact system. Because the multi-dimensional tori attractors are very rare in the low-dimensional systems, we find that these coexisting tori attractors have positive measure basins in the sense of Milnor. The coexisting multi-dimensional tori attractors can be distinguished by the exactly Poincaré mapping and Lyapunov dimension. The basin of attraction can be estimated by the limit cycle in the Poincaré section from the viewpoint of engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Thompson, J.M.T., Stewart, H.B.: Nonlinear Dynamics and Chaos, 2nd edn. Wiley, New York (2002)

    MATH  Google Scholar 

  2. Grebogi, C., Ott, E., Yorke, J.A.: Are three-frequency quasiperiodic orbits to be expected in typical nonlinear dynamical systems? Phys. Rev. Lett. 51, 339–342 (1983)

    Article  MathSciNet  Google Scholar 

  3. Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963)

    Article  Google Scholar 

  4. Grebogi, C., Ott, E., Pelikan, S., Yorke, J.A.: Strange attractors that are not chaotic. Phys. D 13, 261–268 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  5. Timme, M., Wolf, F., Geisel, T.: Prevalence of unstable attractors in networks of pulse-coupled oscillators. Phys. Rev. Lett. 89, 154105 (2002)

    Article  Google Scholar 

  6. Milnor, J.: On the concept of attractor. Commun. Math. Phys. 99, 177–195 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  7. Wen, G.L., Xie, J.H., Xu, D.: Onset of degenerate Hopf bifurcation of a vibro-impact oscillator. J. Appl. Mech. 71, 579–581 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. Wen, G., Xu, H., Xie, J.: Controlling Hopf-Hopf interaction bifurcations of a two-degree-of-freedom self-excited system with dry friction. Nonlinear Dyn. 64, 49–57 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  9. Luo, G.W., Chu, Y.D., Zhang, Y.L., Zhang, J.G.: Double Neimark-Sacker bifurcation and torus bifurcation of a class of vibratory systems with symmetrical rigid stops. J. Sound Vib. 298, 154–179 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  10. Xie, J.H., Ding, W.C.: Hopf-Hopf bifurcation and invariant torus \(\text{ T }^{2}\) of a vibro-impact system. Int. J. Non-Linear Mech. 40, 531–543 (2005)

  11. Yue, Y., Xie, J.H.: Lyapunov exponents and coexistence of attractors in vibro-impact systems with symmetric two-sided rigid constraints. Phys. Lett. A 373, 2041–2046 (2009)

  12. Feudel, U.: Complex dynamics in multistable systems. Int. J. Bifurc. Chaos 18, 1607–1626 (2008)

    Article  MathSciNet  Google Scholar 

  13. Hsu, C.S.: Cell-to-Cell Mapping: A Method of Global Analysis for Nonlinear Systems. Springer, New York (1987)

    Book  MATH  Google Scholar 

  14. Tongue, B.H.: On obtaining global nonlinear system characteristics through interpolated cell mapping. Phys. D 28, 401–408 (1987)

    Article  MathSciNet  Google Scholar 

  15. Tongue, B.H., Gu, K.: Interpolated cell mapping of dynamical systems. J. Appl. Mech. 55, 461–466 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  16. Virgin, L.N., Begley, C.J.: Grazing bifurcations and basins of attraction in an impact-friction. Phys. D 130, 43–57 (1999)

    Article  MATH  Google Scholar 

  17. Ge, Z.M., Lee, S.C.: A modified interpolated cell mapping method. J. Sound. Vib. 199, 189–206 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  18. Hong, L., Xu, J.: Chaotic saddles in Wada basin boundaries and their bifurcations by the generalized cell-mapping digraph (GCMD) method. Nonlinear Dyn. 32, 371–385 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  19. Hong, L., Sun, J.Q.: Codimension two bifurcations of nonlinear systems driven by fuzzy nose. Phys. D 213, 181–189 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  20. Eason, R.P., Dick, A.J.: A parallelized multi-degrees-of-freedom cell mapping method. Nonlinear Dyn. 77, 467–479 (2014)

    Article  Google Scholar 

  21. van der Spek, J.A.W., de Hoon, C.A.L., de Kraker, A., van Campen, D.H.: Application of cell mapping methods to a discontinuous dynamic system. Nonlinear Dyn. 6, 87–99 (1994)

    Article  Google Scholar 

  22. Zhang, Y.: Strange nonchaotic attractors with Wada basins. Phys. D 259, 26–36 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  23. Zhang, Y., Luo, W.: Torus-doubling bifurcations and strange nonchaotic attractors in a vibro-impact system. J. Sound Vib. 332, 5462–5475 (2013)

    Article  Google Scholar 

  24. Yue, Y., Xie, J., Cao, X.: Determining Lyapunov spectrum and Lyapunov dimension based on the Poincaré map in a vibro-impact system. Nonlinear Dyn. 69, 743–753 (2012)

    Article  MATH  Google Scholar 

  25. De Souza, S.L.T., Caldas, I.L.: Calculation of Lyapunov exponts in systems with impact. Chaos Solitons Fractals 19, 569–579 (2004)

    Article  MATH  Google Scholar 

  26. Jiang, J., Xu, J.X.: A method of point mapping under cell reference for global analysis of non-linear dynamical systems. Phys. Lett. A 188, 137–145 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  27. Jiang, J., Xu, J.X.: An iterative method of point mapping under cell reference for the global analysis: theory and a multiscale reference technique. Nonlinear Dyn. 15, 103–114 (1998)

    Article  MATH  Google Scholar 

  28. Jiang, J., Xu, J.X.: A iterative method of point mapping under cell reference for global analysis of non-linear dynamical systems. J Sound. Vib. 194, 605–621 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  29. Grassberger, P., Procaccia, I.: Measuring the strangeness of strange attractors. Phys. D 9, 189–208 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  30. Hsu, C.S.: Global analysis by cell mapping. Int. J. Bifurc. Chaos 2, 727–771 (1992)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors are deeply indebted to all anonymous reviewers for their careful reading of the manuscript, as well as for their fruitful comments and advice which led to an improvement of this Letter. We would like to thank you very much for helping us to correct some minor points in the manuscript. This work was supported by the National Natural Science Foundation of China (Nos. 61034005 and 61433004) and the National High Technology Research and Development Program of China (2012AA040104) and IAPI Fundamental Research Funds 2013ZCX14. This work was supported also by the development project of key laboratory of Liaoning province and supported by the NSFC (Nos. 11172119 and 11362008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongxiang Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Zhang, Y. & Luo, G. Basins of coexisting multi-dimensional tori in a vibro-impact system. Nonlinear Dyn 79, 2177–2185 (2015). https://doi.org/10.1007/s11071-014-1803-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1803-5

Keywords

Navigation