Skip to main content
Log in

An estimation for the number of limit cycles in a Liénard-like perturbation of a quadratic nonlinear center

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The number of limit cycles which bifurcates from periodic orbits of a differential system with a center has been extensively studied recently using many distinct tools. This problem was proposed by Hilbert in 1900, and it is a difficult problem, so only particular families of such systems were considered. In this paper, we study the maximum number of limit cycles that can bifurcate from an integrable nonlinear quadratic isochronous center, when perturbed inside a class of Liénard-like polynomial differential systems of arbitrary degree \(n\). We apply the averaging theory of first order to this class of Liénard-like polynomial differential systems, and we estimate that the number of limit cycles is \(2[(n-2)/2]\), where \([.]\) denotes the integer part function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ahlfors, L.: Complex Analysis. International Series in Pure and Applied Mathematics, vol. 7. McGraw-Hill, New York (1979)

  2. Barreira, L., Valls, C.: Ordinary Differential Equations: Qualitative Theory, Graduate Studies in Mathematics, vol. 137. AMS (2012)

  3. Badi, S., Makhlouf, A.: Limit cycles of the generalized Liénard differential equation via averaging theory. Ann. Differ. Equ. 27, 472–479 (2011)

    MATH  MathSciNet  Google Scholar 

  4. Boussaada, I., Chouikha, A.R.: Existence of periodic solution for perturbed generalized Liénard equations. Electron. J. Differ. Equ. 140, 1–10 (2006)

    MathSciNet  Google Scholar 

  5. Buică, A., Llibre, J.: Averaging methods for finding periodic orbits via Brouwer degree. Bulletin des Sciences Mathématiques 128, 7–22 (2004)

    Article  MATH  Google Scholar 

  6. Buică, A., Gasull, A., Yang, J.: The third order Melnikov function of a quadratic center under quadratic perturbations. J. Math. Anal. Appl. 331, 443–454 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chavarriga, J., Sabatini, M.: A survey of isochronous centers. Qual. Theory Dyn. Syst. 1, 1–70 (1999)

    Article  MathSciNet  Google Scholar 

  8. Chicone, C., Jacobs, M.: Bifurcation of limit cycles from quadratic isochrones. J. Differ. Equ. 91, 268–326 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  9. Christopher, C.J., Lynch, S.: Small-amplitude limit cycle bifurcations for Liénard systems with quadratic or cubic dumping or restoring forces. Nonlinearity 12, 1099–1112 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  10. De Maesschalck, P., Dumortier, F.: Classical Liénard equation of degree \(n \ge 6\) can have \(\left[\frac{n-1}{2}\right]+2\) limit cycles. J. Differ. Equ. 250, 2162–2176 (2011)

    Article  MATH  Google Scholar 

  11. Dumortier, F., Panazzolo, D., Roussarie, R.: More limit cycles than expected in Liénard systems. Proc. Am. Math. Soc. 135, 1895–1904 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gasull, A., Torregrosa, J.: Small-amplitude limit cycles in Liénard systems via multiplicity. J. Differ. Equ. 159, 1015–1039 (1998)

    MathSciNet  Google Scholar 

  13. Han, M., Yu, P.: Normal Forms, Melnikov Functions and Bifurcations of Limit Cycles. Applied Mathematical Sciences, vol. 181. Springer, London (2012).

  14. Kong, X., Xiong, Y.: Limit cycle bifurcations in a class of quintic \(\mathbb{Z}_2\)-equivariant polynomial systems. Nonlinear Dyn. 73, 1271–1281 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  15. Li, F., Wang, M.: Bifurcation of limit cycles in a quintic system with ten parameters. Nonlinear Dyn. 71, 213–222 (2013)

  16. Li, H.: Limit cycles in a sextic Lyapunov system. Nonlinear Dyn. 72, 555–559 (2013)

    Article  Google Scholar 

  17. Li, C., Llibre, J.: Uniqueness of limit cycle for Liénard equations of degree four. J. Differ. Equ. 252, 3142–3162 (2012)

  18. Lins, A., de Melo, W., Pugh, C.C.: On Liénard’s Equation, Lecture Notes in Math, vol. 597, pp. 335–357. Springer, Berlin (1977)

  19. Llibre, J., Mereu, A.: Limit cycles for generalized Kukles polynomial differential systems. Nonlinear Anal. 74, 1261–1271 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  20. Llibre, J., Mereu, A., Teixeira, M.A.: Limit cycles of the generalized polynomial Liénard differential equations. Math. Proc. Camb. Philos. Soc. 148, 363–384 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  21. Llibre, J., Martins, R.M., Teixeira, M.A.: Periodic orbits, invariant tori and cylinders of Hamiltonian systems near integrable ones having a return map equal to the identity. J. Math. Phys. 51, 082704 (2010)

    Article  MathSciNet  Google Scholar 

  22. Loud, W.S.: Behavior of the period of solutions of certain plane autonomous systems near centers. Contrib. Differ. Equ. 3, 21–36 (1964)

    MathSciNet  Google Scholar 

  23. Lynch, S.: Limit cycles if generalized Liénard equations. Appl. Math. Lett. 8, 15–17 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  24. Lynch, S.: Generalized quadratic Liénard equations. Appl. Math. Lett. 11, 7–10 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  25. Lynch, S.: Generalized cubic Liénard equations. Appl. Math. Lett. 12, 1–6 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  26. Lynch, S., Christopher, C.J.: Limit cycles in highly non-linear differential equations. J. Sound Vib. 224, 505–517 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  27. Murdock, J., Sanders, A., Verhultst, F.: Averaging Methods in Nonlinear Dynamical Systems, 2nd edn. Appl. Math. Sci., vol. 59. Springer, Berlin (2007)

  28. Smale, S.: Mathematical problems for the next century. Math. Intell. 20, 7–15 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  29. Yu, P., Han, M.: Limit cycles in generalized Liénard systems. Chaos Solitons Fractals 30, 1048–1068 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  30. Zhao, Y., Zhu, H.: Bifurcation of limit cycles from a non-Hamiltonian quadratic integrable system with homoclinic loop. In: Infinite Dimensional Dynamical Systems, Fields Inst. Commun., vol. 64, pp. 445–479. Springer, New York (2013)

Download references

Acknowledgments

The authors are grateful to the referees for his/her valuable instructions and suggestions to improve this paper. The first author is supported by Fapesp Grant 2012/06879-1. The first and second authors are supported by Fapesp Grant 2012/18780-0. The third author is partially supported by CNPq fellowship “Projeto Universal” 472796/2013-5 and by FP7-PEOPLE-2012-IRSES-316338.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Regilene D. S. Oliveira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martins, R.M., Mereu, A.C. & Oliveira, R.D.S. An estimation for the number of limit cycles in a Liénard-like perturbation of a quadratic nonlinear center. Nonlinear Dyn 79, 185–194 (2015). https://doi.org/10.1007/s11071-014-1655-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1655-z

Keywords

Mathematics Subject Classification

Navigation