Skip to main content
Log in

Soliton solutions and Bäcklund transformations of a (2 + 1)-dimensional nonlinear evolution equation via the Jaulent–Miodek hierarchy

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a (2 + 1)-dimensional nonlinear evolution equation generated via the Jaulent–Miodek hierarchy is investigated. Based on the Bell polynomials and Hirota method, bilinear forms and Bäcklund transformations are derived. One- and two-soliton solutions are constructed via symbolic computation. Soliton solutions are obtained through the Bäcklund transformations. We can get three types by choosing different parameters: the kink, bell-shape, and anti-bell-shape solitons. Propagation of the one soliton and elastic interactions between the two solitons are discussed graphically. After the interaction of the two bell-shape or anti-bell-shape solitons, solitonic shapes and amplitudes keep invariant except for some phase shifts, while after the interaction of the kink soliton and anti-bell-shape soliton, the anti-bell-shape soliton turns into a bell-shape one, and the kink soliton keeps its shape, with their amplitudes unchanged.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ablowitz, M.J., Clarkson, P.A.: Nonlinear Evolution Equations and Inverse Scattering. Cambridge Univ. Press, Cambridge (1991)

    Book  MATH  Google Scholar 

  2. Sun, Z.Y., Gao, Y.T., Yu, X., Liu, Y.: Dynamics of bound vector solitons induced by stochastic perturbations: Soliton breakup and soliton switching. Phys. Lett. A 377, 3283–3290 (2013)

  3. Aranson, I.S., Kramer, L.: The world of the complex Ginzburg–Landau equation. Rev. Mod. Phys. 74, 99–143 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Zabusky, N.J., Kruskal, M.D.: Interaction of solitons in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 15, 240–243 (1965)

    Article  MATH  Google Scholar 

  5. Zuo, D.W., Gao, Y.T., Meng, G.Q., Shen, Y.J., Yu, X.: Multi-soliton solutions for the three-coupled KdV equations engendered by the Neumann system. Nonlinear Dyn. 75, 701–708 (2014)

  6. Gardner, C.S., Greene, J.M., Kruskal, M.D., Miura, R.M.: Method for solving the Korteweg–deVries equation. Phys. Rev. Lett. 19, 1095–1097 (1967)

    Article  Google Scholar 

  7. Kadomtsev, B.B., Petviashvili, V.I.: On the stability of solitary waves in weakly dispersing media. Sov. Phys. Dokl. 15, 539–541 (1970)

    MATH  Google Scholar 

  8. Deng, S.F.: The multisoliton solutions for the nonisospectral mKP equation. Phys. A 362, 198–204 (2007)

    MATH  Google Scholar 

  9. Sun, Z.Y., Gao, Y.T., Liu, Y., Yu, X.: Soliton management for a variable-coefficient modified Korteweg-de Vries equation. Phys. Rev. E 84, 026606 (2011)

  10. Bell, E.T.: Exponential polynomials. Ann. Math. 35, 258–277 (1934)

    Article  Google Scholar 

  11. Shen, Y.J., Gao, Y.T., Yu, X., Meng, G.Q., Qin, Y.: Bell-polynomial approach applied to the seventh-order Sawada-Kotera-Ito equation. Appl. Math. Comput. 227, 502–508 (2014)

  12. Gilson, C., Lambert, F., Nimmo, J., Willox, R.: On the combinatorics of the Hirota D-operators. Proc. R. Soc. Lond. A 452, 223–234 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  13. Lambert, F., Springael, J.: Soliton equations and simple combinatorics. Acta Appl. Math. 102, 147–178 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  14. Lambert, F., Springael, J.: Construction of Bäcklund transformations with binary Bell polynomials. J. Phys. Soc. Jpn. 66, 2211–2213 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hirota, R., Satsuma, J.: Nonlinear evolution equations generated from the Bäcklund transformation for the Boussinesq equation. Prog. Theor. Phys. 57, 797–807 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  16. Hirota, R.: The Direct Method in Soliton Theory. Cambridge Univ. Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  17. Wadati, M.: Wave propagation in nonlinear lattice. I. J. Phys. Soc. Jpn. 38, 673–680 (1975)

    Article  MathSciNet  Google Scholar 

  18. Wadati, M., Sanuki, H., Konno, K.: Relationships among Inverse Method, Bäcklund transformation and an infinite number of conservation laws. Prog. Theor. Phys. 53, 419–436 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  19. Estévez, P.G., Gordoa, P.R.: Darboux transformations via Painlev analysis. Inv. Probl. 13, 939–957 (1997)

    Article  MATH  Google Scholar 

  20. Ablowitz, M.J., Kaup, D.J., Newell, A.C., Segur, H.: Nonlinear-evolution equations of physical significance. Phys. Rev. Lett. 31, 125–127 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  21. Leble, S.B., Ustinov, N.V.: Third order spectral problems: reductions and Darboux transformations. Inv. Probl. 10, 617–633 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  22. Clarkson, P.A.: Nonclassical symmetry reductions of the Boussinesq equation. Chaos Solitons Fract. 5, 2261–2301 (1995)

    Article  MathSciNet  Google Scholar 

  23. Estévez, P.G.: Darboux transformation and solutions for an equation in 2 + 1 dimensions. J. Math. Phys. 40, 1406–1419 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  24. Geng, X.G., Cao, C.W., Dai, H.H.: Quasi-periodic solutions for some (2 + 1)-dimensional integrable models generated by the Jaulent–Miodek hierarchy. J. Phy. A 34, 989–1004 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  25. Zhang, Y.Y., Liu, X.Q., Wang, G.W.: Symmetry reductions and exact solutions of the (2 + 1)-dimensional Jaulent–Miodek equation. Appl. Math. Comput. 219, 911–916 (2012)

  26. Wazwaz, A.M.: Multiple soliton solutions for some (3 + 1)-dimensional nonlinear models generated by the Jaulent–Miodek hierarchy. Appl. Math. Lett. 25, 1936–1940 (2012)

  27. Tian, B., Gao, Y.T.: Symbolic-computation study of the perturbed nonlinear Schrödinger model in inhomogeneous optical fibers. Phys. Lett. A 342, 228–236 (2005)

  28. Tian, B., Gao, Y.T.: Variable-coefficient higher-order nonlinear Schrödinger model in optical fibers: new transformation with burstons, brightons and symbolic computation. Phys. Lett. A 359, 241–248 (2006)

    Article  Google Scholar 

  29. Tian, B., Gao, Y.T.: Cosmic dust-ion-acoustic waves, spherical modified Kadomtsev–Petviashvili model, and symbolic computation. Phys. Plasmas 13, 112901–112906 (2006)

    Article  Google Scholar 

  30. Shen, Y.J., Gao, Y.T., Zuo, D.W., Sun, Y.H., Feng, Y.J., Xue, L.: Nonautonomous matter waves in a spin-1 Bose-Einstein condensate. Phys. Rev. E 89, 062915 (2014)

  31. Zuo, D.W., Gao, Y.T., Sun, Y.H., Feng, Y.J., Xue, L.: Multi-Soliton and Rogue-Wave Solutions of the Higher-Order Hirota System for an Erbium-Doped Nonlinear Fiber. Z. Naturforsch. A. doi:10.5560/ZNA.2014-0045 (2014)

  32. Sun, Z.Y., Gao, Y.T., Yu, X., Liu, Y.: Amplification of nonautonomous solitons in the Bose-Einstein condensates and nonlinear optics. Europhys. Lett. 93, 40004 (2011)

Download references

Acknowledgments

This work has been supported by the National Natural Science Foundation of China under Grant No. 11272023, by the Open Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications) under Grant No. IPOC2013B008, and by the Fundamental Research Funds for the Central Universities of China under Grant No. 2011BUPTYB02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Tian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, DY., Tian, B., Jiang, Y. et al. Soliton solutions and Bäcklund transformations of a (2 + 1)-dimensional nonlinear evolution equation via the Jaulent–Miodek hierarchy. Nonlinear Dyn 78, 2341–2347 (2014). https://doi.org/10.1007/s11071-014-1581-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1581-0

Keywords

Navigation