Skip to main content
Log in

Principal resonance bifurcation of bending–torsion coupling of aero-engine compressor blade with assembled clearance under lateral displacement excitation of rotor shaft

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The principal resonance of bending–torsion coupling of a compressor blade with an assembled clearance and a cubic structural nonlinearity, subjected to the lateral displacement excitation of rotor shaft and aerodynamic loads, is analyzed to explore the topology transformation of amplitude–frequency response along with the changes of the physical parameters. The bifurcation equation of the first-order principal resonance response is derived from using the averaging method. The transition set and the bifurcation figures of the response solution are obtained by the singularity theory. The effects of the main physical parameters of the system on the topology transformation of amplitude–frequency response are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

\(A_i \) :

Harmonic amplitude

\(\theta _i \) :

Harmonic phase angle

\(D\) :

Displacement amplitude of rotor lateral vibration

\(\bar{{D}}\) :

Dimensionless displacement amplitude of rotor lateral vibration

\(a_h \) :

Dimensionless location of elastic axis from mid-chord, positive toward trailing edge of airfoil

\(r_\alpha \) :

Dimensionless radius of gyration about the elastic axis

\(h\) :

Bending deflection relative to rotor shaft

\(h_1 \) :

Dimensionless bending deflection relative to rotor shaft

\(b\) :

Semi-chord

\(m\) :

Mass per unit span of blade

\(t\) :

Time

\(\tau \) :

Dimensionless time

\(S_\alpha \) :

Static moment per unit span about elastic axis

\(I_\alpha \) :

Moment of inertia about elastic axis

\(V\) :

Freestream velocity relative to blades

\(V^{*}\) :

Non-dimensional freestream velocity

\(\delta \) :

Semi-clearance distance

\(\delta _1 \) :

Dimensionless semi-clearance distance

\(\{^{.}\}\) :

Differentiation with respect to \(t\)

\(\{^{\prime }\}\) :

Differentiation with respect to \(\tau \)

\(F(h)\) :

Piecewise linear displacement function in bending

\(F_1 (h_1 )\) :

Dimensionless piecewise linear displacement function in bending

\(M(\alpha )\) :

Nonlinear function in torsion

\(Q_h (t)\) :

Aerodynamic force

\(Q_\alpha (t)\) :

Aerodynamic moment

\(S(h_1 )\) :

Nonlinear displacement function in bending

\(x_\alpha \) :

Dimensionless location of mass center from the elastic axis, positive toward trailing edge of the airfoil

\(K_h \) :

Bending stiffness of blade

\(K_\alpha \) :

Torsional rigidity of blade

\(\alpha \) :

Torsional deflection, positive clockwise

\(\beta \) :

Nonlinear torsional rigidity coefficient

\(\omega _h \) :

Uncoupled bending natural frequencies

\(\omega _\alpha \) :

Uncoupled torsional natural frequencies

\(\omega \) :

Dimensionless frequency of rotor lateral vibration

\(\Omega \) :

Frequency of rotor lateral vibration

\(\mu \) :

Mass ratio of blade

\(\rho \) :

Air density

\(\bar{{\omega }}\) :

Frequency ratio \(\omega _h /\omega _\alpha \)

\(\lambda _k \) :

Modal frequency

\(\zeta _h \) :

Damping coefficients in bending

\(\zeta _\alpha \) :

Damping coefficients in torsion

\(B_1 \) :

Bifurcation set

\(H_1 \) :

Hysteresis set

\(D_1 \) :

Double limit set

\(B_2 \) :

Supplemental constraint bifurcation set

\(H_2 \) :

Supplemental constraint hysteresis set

\(D_2 \) :

Supplemental constraint double limit set

References

  1. Rao, J.S., Carnegie, W.: Solution of the equations of motion of coupled-bending bending torsion vibrations of turbine blades by the method of Ritz-Galerkin. Int. J. Mech. Sci. 12(10), 875–882 (1970)

    Article  MATH  Google Scholar 

  2. Subrahmanyam, K.B., Kulkarni, S.V., Rao, J.S.: Coupled bending-torsion vibrations of rotating blades of asymmetric aerofoil cross section with allowance for shear deflection and rotary inertia by use of the Reissner method. J. Sound Vib. 75(1), 17–36 (1981)

  3. Lin, S.M.: Dynamic analysis of rotating nonuniform Timoshenko beams with an elastically restrained root. ASME J. Appl. Mech. 66, 742–748 (1999)

    Article  Google Scholar 

  4. Banerjee, J.R.: Development of an exact dynamic stiffness matrix for free vibration analysis of a twisted Timoshenko beam. J. Sound Vib. 270(1–2), 379–401 (2004)

    Article  MATH  Google Scholar 

  5. Abbas, B.A.H.: Dynamic stability of rotating Timoshenko beam with a flexible root. J. Sound Vib. 108(1), 25–32 (1986)

    Article  Google Scholar 

  6. Yokoyama, T.: Parametric instability of Timoshenko beam resting on an elastic foundation. Comput. Struct. 28(2), 207–216 (1988)

    Article  MATH  Google Scholar 

  7. Tan, T.H., Lee, H.P., Leng, G.S.B.: Dynamic stability of a radially rotating beam subjected to base excitation. Comput. Methods Appl. Mech. Eng. 146, 265–279 (1997)

    Article  MATH  Google Scholar 

  8. Chen, L.W., Peng, W.K.: Dynamic stability of rotating blades with geometric non-linearity. J. Sound Vib. 187(3), 421–433 (1995)

    Article  Google Scholar 

  9. Al Nassar, Y.M., Al Bedoor, B.O., Hamdan, M.N.: On the vibration of a rotating blade on a torsionally flexible shaft. J. Sound Vib. 259(5), 1237–1242 (2003)

    Article  Google Scholar 

  10. Bendiksen, O.O., Friedmann, P.P.: Coupled bending-torsion flutter in cascades. AIAA J. 18, 194–201 (1980)

  11. Bendiksen, O.O., Friedmann, P.P.: Coupled bending-torsion flutter in a supersonic cascade. AIAA J. 19, 774–781 (1981)

    Article  MATH  Google Scholar 

  12. Bendiksen, O.O., Friedmann, P.P.: The effect of bending-torsion coupling of fan and compressor blade flutter. ASME J. Eng. Power 104, 617–623 (1982)

    Article  Google Scholar 

  13. Abbas, L.K., Chen, Q., O’Donnell, K., Valentine, D., Marzocca, P.: Numerical studies of a non-linear aeroelastic system with plunging and pitching freeplays in supersonic/hypersonic regimes. Aerosp. Sci. Technol. 11(5), 405–418 (2007)

  14. Chen, Y.M., Liu, J.K.: Nonlinear aeroelastic analysis of an airfoil-store system with a freeplay by precise integration method. J. Fluid. Struct. 46(4), 149–164 (2014)

    Article  Google Scholar 

  15. Chen, F.X., Liu, J.K., Chen, Y.M.: Flutter analysis of an airfoil with nonlinear damping using equivalent linearization. Chin. J. Aeronaut. 27(1), 59–64 (2014)

    Article  Google Scholar 

  16. Chengsheng, Z., Zhaohong, S.: The theoretical researches about the effects of three centers of blade on flutter. J. Beijing Inst. Aeronaut. Astronaut. 4, 33–38 (1986). (in Chinese)

  17. Yushu, C.: Nonlinear Vibration. Higher Education Press, Beijing China (2002). (in Chinese)

    Google Scholar 

  18. Zhiqiang, W., Chen, Y.: New bifurcation patterns in elementary bifurcation problems with single-side constraint. Appl. Math. Mech.-Engl. Ed. 22(11), 1135–1141 (2001)

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of the National Science Foundation of China under the Grant 10632040.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Han.

Appendix

Appendix

The coefficient expressions of Eqs. (5) and (6) are

$$\begin{aligned}&a_{11} =\frac{\bar{{\omega }}^{2}r_\alpha ^2 }{r_\alpha ^2 -x_a^2 }, \quad a_{12} =\frac{\left[ {2V^{*{2}}}r_\alpha ^2 +x_a V^{^{{*2}}(1+2a_h )-\mu x_a r_\alpha ^2 } \right] }{\mu \left( {r_\alpha ^2 -x_a ^{2}} \right) }, \\&a_{13} =\frac{2\zeta _\lambda r_\alpha ^2 \bar{{\omega }}}{r_\alpha ^2 -x_a^2 }, \quad a_{{14}} -\frac{2\zeta _\alpha x_a r_\alpha ^2 }{r_\alpha ^2 -x_a^2 }, \quad a_{15} = -\frac{x_a r_\alpha ^2 \beta }{r_\alpha ^2 -x_a^2 }, \\&a_{16} =\frac{r_\alpha ^2 D_1 \omega ^{2}\sin \gamma }{r_\alpha ^2 -x_a^2 }, a_{21} = -\frac{x_a }{r_\alpha ^2 }a_{11} ,\\&a_{22} =\frac{\left( {2V^{*{2}}x_a +V^{*{2}}(1+2a_h ) -\mu r_\alpha ^2 } \right) }{\mu \left( {x_a^2 -r_\alpha ^2 } \right) },\\&a_{23} =-\frac{x_a }{r_\alpha ^2 }a_{13} , \quad a_{24} =-\frac{1}{x_a }a_{{14}} ,\\&a_{25} =-\frac{1}{x_a }a_{15} , \quad a_{26} =-\frac{x_a }{r_\alpha ^2 }a_{16} . \end{aligned}$$

The matrix \({{\varvec{A}}}\) and vector \(F(X,\tau )\) of Eq. (7) are

$$\begin{aligned}&\mathbf{A}=\left[ {{\begin{array}{cccc} 0&{} 1&{} 0&{} 0 \\ {-a_{11} }&{} 0&{} {-a_{12} }&{} 0 \\ 0&{} 0&{} 0&{} 1 \\ {-a_{21} }&{} 0&{} {-a_{22} }&{} 0 \\ \end{array} }} \right] , \quad F(X,\tau )=\left\{ {{\begin{array}{l} 0 \\ {F_1 } \\ 0 \\ {F_2 } \\ \end{array} }} \right\} , \end{aligned}$$
$$\begin{aligned} \left\{ {\begin{array}{l} \displaystyle F_1 \!=\!-a_{13} x_2 -a_{{14}} x_4 -\;a_{11} S(x_1 )-a_{15} x_3^3 +a_{16} \cos \omega \tau \\ \displaystyle F_2 \!=\!-a_{23} x_2 -\;a_{24} x_4 -a_{21} S(x_1 )-a_{25} x_3^3 +a_{26} \cos \omega \tau \\ \end{array}} \right. . \end{aligned}$$

The variables of Eq. (9) are

$$\begin{aligned} \overline{F_1 } =0, \quad \overline{F_2 } =F_1 , \quad \overline{F_3 } =0, \quad \overline{F_4 } =F_2 . \end{aligned}$$

The modal frequencies of derivation equation \(\dot{X}=AX\) of Eq. (7) are

$$\begin{aligned}&\lambda _k =\sqrt{\frac{1}{2}\left[ {\left( {a_{22} +a_{11} } \right) \mp \sqrt{\left( {a_{22} +a_{11} } \right) ^{2}-4\left( {a_{22} a_{11} -a_{21} a_{12} } \right) }} \right] }\\&\quad (k=1,2), \end{aligned}$$

where the conditions of two different positive \(\lambda _k \) are

$$\begin{aligned} \left\{ {\begin{array}{l} a_{22} +a_{11} >0 \\ \left( {a_{22} +a_{11} } \right) ^{2}-4\left( {a_{22} a_{11} -a_{21} a_{12} } \right) >0 \\ \end{array}} \right. . \end{aligned}$$

The fundamental solution sets \(\phi _{sk} (\theta _k )\) and \(\varphi _{sk}^*(\theta _k )\) of the derivation equation \(\dot{X}=AX\) of Eq. (7) are

$$\begin{aligned} \left. {\begin{array}{ll} \varphi _{1k} =\cos \lambda _k \tau ,\\ \varphi _{1k}^*=\sin \lambda _k \tau \\ \varphi _{2k} =-\lambda _k \sin \lambda _k \tau ,\\ \varphi _{2k}^*=\lambda _k \cos \lambda _k \tau \\ \varphi _{3k} =\frac{1}{a_{12} }\left( {\lambda _k^2 -a_{11} } \right) \cos \lambda _k \tau ,\\ \varphi _{3k}^*=\frac{1}{a_{12} }\left( {\lambda _k^2 -a_{11} } \right) \sin \lambda _k \tau \\ \varphi _{4k} =-\frac{\lambda _k }{a_{12} }\left( {\lambda _k^2 -a_{11} } \right) \sin \lambda _k \tau ,\\ \varphi _{4k}^*=\frac{\lambda _k }{a_{12} }\left( {\lambda _k^2 -a_{11} } \right) \cos \lambda _k \tau \\ \end{array}} \right\} \quad (k=1,2). \end{aligned}$$

The fundamental solution sets \(\phi _{sj} (\theta _j )\) and \(\phi _{sj}^*(\theta _j )\) of the adjoint equation of the derivation equation \(\dot{X}={{\varvec{A}}}\cdot X\)of Eq. (7) are

$$\begin{aligned} \left. {\begin{array}{l} \phi _{1k} =\cos \lambda _k \tau ,\\ \phi _{1k}^*=\sin \lambda _k \tau \\ \phi _{2k} =-\frac{1}{\lambda _k }\sin \lambda _k \tau ,\\ \phi _{2k}^*=\frac{1}{\lambda _k }\cos \lambda _k \tau \\ \phi _{3k} =\frac{1}{a_{21} }\left( {\lambda _k ^{2}-a_{11} } \right) \cos \lambda _k \tau ,\\ \phi _{3k}^*=\frac{1}{a_{21} }\left( {\lambda _k ^{2}-a_{11} } \right) \sin \lambda _k \tau \\ \phi _{4k} =-\frac{1}{a_{21} \lambda _k }\left( {\lambda _k ^{2}-a_{11} } \right) \sin \lambda _k \tau ,\\ \phi _{4k}^*=\frac{1}{a_{21} \lambda _k }\left( {\lambda _k ^{2}-a_{11} } \right) \cos \lambda _k \tau \\ \end{array}} \right\} \quad (k=1,2). \end{aligned}$$

The expression of \(\Delta _k^{\prime } \) in formula (10) is

$$\begin{aligned} \Delta _k^{\prime } =1+\frac{1}{a_{12} a_{21} }\left( {\lambda _k ^{2}-a_{11} } \right) ^{2}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, G., Chen, Y. Principal resonance bifurcation of bending–torsion coupling of aero-engine compressor blade with assembled clearance under lateral displacement excitation of rotor shaft. Nonlinear Dyn 78, 2049–2058 (2014). https://doi.org/10.1007/s11071-014-1547-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1547-2

Keywords

Navigation