Skip to main content
Log in

Design of sampled data state estimator for Markovian jumping neural networks with leakage time-varying delays and discontinuous Lyapunov functional approach

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper is concerned with the sampled-data state estimation problem for neural networks with both Markovian jumping parameters and leakage time-varying delays. Instead of the continuous measurement, the sampled measurement is used to estimate the neuron states, and a sampled-data estimator is constructed. In order to make full use of the sawtooth structure characteristic of the sampling input delay, a discontinuous Lyapunov functional is proposed based on the extended Wirtinger inequality. A less conservative delay dependent stability criterion is derived via constructing a new triple-integral Lyapunov–Krasovskii functional and the famous Jenson integral inequality. Based on the Lyapunov–Krasovskii functional approach, a state estimator of the considered neural networks has been achieved by solving some linear matrix inequalities, which can be easily facilitated by using the standard numerical software. Finally, two numerical examples are provided to show the effectiveness of the proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hagan, M.T., Demuth, H.B., Beale, M.: Neural Network Design. PWS Publishing Company, Boston (1996)

    Google Scholar 

  2. Gupta, M.M., Jin, L., Homma, N.: Static and Dynamic Neural Networks: from Fundamentals to Advanced Theory. Wiley, New York (2003)

    Book  Google Scholar 

  3. Cichoki, A., Unbehauen, R.: Neural Networks for Optimization and Signal Processing. Wiley, Chichester (1993)

    Google Scholar 

  4. Haykin, S.: Neural Networks: a Comprehensive Foundation. Prentice Hall, New York (1998)

    Google Scholar 

  5. Ahn, C.K.: Robust stability of recurrent neural networks with ISS learning algorithm. Nonlinear Dyn. 65, 413–419 (2011)

    Article  Google Scholar 

  6. Haken, H.: Pattern recognition and synchronization in pulse-coupled neural networks. Nonlinear Dyn. 44, 269–276 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hendzel, Z.: An adaptive critic neural network for motion control of a wheeled mobile robot. Nonlinear Dyn. 50, 849–855 (2007)

    Article  MATH  Google Scholar 

  8. Civalleri, P.P., Gilli, M., Pandolfi, L.: On stability of cellular neural networks with delay. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 40, 157–165 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  9. Marcus, C.M., Westervelt, R.M.: Stability of analog neural networks with delay. Phys. Rev. A 39, 347–359 (1989)

    Article  MathSciNet  Google Scholar 

  10. Cao, J.: Global stability conditions for delayed CNNs. IEEE Trans. Circuits Syst. I 48, 1330–1333 (2001)

    Article  MATH  Google Scholar 

  11. Liao, T.L., Wang, F.C.: Global stability for cellular neural networks with time delay. IEEE Trans. Neural Netw. 11, 1481–1484 (2000)

    Article  Google Scholar 

  12. Li, X., Cao, J.: Delay-dependent stability of neural networks of neutral-type with time delay in the leakage term. Nonlinearity 23, 1709–1726 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fu, X., Li, X., Akca, H.: Exponential state estimation for impulsive neural networks with time delay in the leakage term. Arab. J. Math. (2012). doi:10.1007/s40065-012-0045-y

    Google Scholar 

  14. Zhu, Q., Cao, J.: Robust exponential stability of Markovian jump impulsive stochastic Cohen–Grossberg neural networks with mixed time delays. IEEE Trans. Neural Netw. 21, 1314–1325 (2010)

    Article  Google Scholar 

  15. Zhu, Q., Cao, J.: Stability analysis of Markovian jump stochastic BAM neural networks with impulsive control and mixed time delays. IEEE Trans. Neural Netw. Learn. Syst. 23, 467–479 (2012)

    Article  Google Scholar 

  16. Van Den Driessche, P., Zou, X.: Global attractivity in delayed Hopfield neural network models. SIAM J. Appl. Math. 6, 1878–1890 (1998)

    Article  Google Scholar 

  17. Park, J., Kwon, O.: Design of state estimator for neural networks of neutral-type. Appl. Math. Comput. 202, 360–369 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Park, J., Kwon, O.: Further results on state estimation for neural networks of neutral-type with time-varying delay. Appl. Math. Comput. 208, 69–75 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Liu, Y., Wang, Z., Liu, X.: State estimation for discrete-time Markovian jumping neural networks with mixed mode-dependent delays. Phys. Lett. A 372, 7147–7155 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Balasubramaniam, P., Lakshmanan, S., Jeeva, S.: Sathya theesar, state estimation for Markovian jumping recurrent neural networks with interval time-varying delays. Nonlinear Dyn. 60, 661–675 (2010)

    Article  MATH  Google Scholar 

  21. Liu, Y., Wang, Z., Liang, J., Liu, X.: Synchronization and state estimation for discrete-time complex networks with distributed delays. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 38, 1314–1325 (2008)

    Article  Google Scholar 

  22. Shen, B., Wang, Z., Liu, X.: Bounded synchronization and state estimation for discrete time-varying stochastic complex networks over a finite horizon. IEEE Trans. Neural Netw. 22, 145–157 (2011)

    Article  Google Scholar 

  23. Huang, H., Feng, G., Cao, J.: Robust state estimation for uncertain neural networks with time-varying delay. IEEE Trans. Neural Netw. 19, 1329–1339 (2008)

    Article  Google Scholar 

  24. Liu, X., Cao, J.: Robust state estimation for neural networks with discontinuous activations. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 40, 1425–1437 (2010)

    Article  MathSciNet  Google Scholar 

  25. Bao, H., Cao, J.: Delay-distribution-dependent state estimation for discrete-time stochastic neural networks with random delay. Neural Netw. 24, 19–28 (2011)

    Article  MATH  Google Scholar 

  26. Huang, H., Feng, G., Cao, J.: Guaranteed performance state estimation of static neural networks with time-varying delay. Neurocomputing 74, 606–616 (2011)

    Article  Google Scholar 

  27. Lakshmanan, S., Park, J.H., Ji, D.H., Jung, H.Y., Nagamani, G.: State estimation of neural networks with time-varying delays and Markovian jumping parameter based on passivity theory. Nonlinear Dyn. 70, 1421–1434 (2012)

    Article  MathSciNet  Google Scholar 

  28. Fridman, E., Shaked, U., Suplin, V.: Input/output delay approach to robust sampled-data H control. Syst. Control Lett. 54, 271–282 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  29. Li, N., Hu, J., Hu, J., Li, L.: Exponential state estimation for delayed recurrent neural networks with sampled-data. Nonlinear Dyn. 69, 555–564 (2012)

    Article  MATH  Google Scholar 

  30. Mikheev, Y., Sobolev, V., Fridman, E.: Asymptotic analysis of digital control systems. Autom. Remote Control 49, 1175–1180 (1988)

    MathSciNet  MATH  Google Scholar 

  31. Astrom, K., Wittenmark, B.: Adaptive Control. Addison-Wesley, Reading (1989)

    Google Scholar 

  32. Fridman, E., Seuret, A., Richard, J.P.: Robust sampled-data stabilization of linear systems: an input delay approach. Automatica 40, 1441–1446 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wang, Z., Ho, D.W.C., Liu, X.: State estimation for delayed neural networks. IEEE Trans. Neural Netw. 16, 279–284 (2005)

    Article  Google Scholar 

  34. Naghshtabrizi, P., Hespanha, J., Teel, A.: Exponential stability of impulsive systems with application to uncertain sampled-data systems. Syst. Control Lett. 57, 378–385 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zhu, X.: Stabilization for sampled-data neural network based control systems. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 41, 210–221 (2011)

    Article  MATH  Google Scholar 

  36. Naghshtabrizi, P., Hespanha, J., Teel, A.: Stability of delay impulsive systems with application to networked control systems. In: Proceedings of the 26th American Control Conference, New York, USA, July 2007

    Google Scholar 

  37. Fridman, E.: A refined input delay approach to sampled-data control. Automatica 46, 421–427 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  38. Liu, K., Fridman, E.: Stability analysis of networked sontrol systems: a discontinuous Lyapunov functional approach. In: Proceedings of the 48th IEEE Conference on Decision and Control, Shanghai, China, December 2009

    Google Scholar 

  39. Hardy, G., Littlewood, J.E., Polya, G.: Inequalities. Cambridge University Press, Cambridge (1934)

    Google Scholar 

  40. Mirkin, L.: Some remarks on the use of time-varying delay to model sample and hold circuits. IEEE Trans. Autom. Control 52, 1109–1112 (2007)

    Article  MathSciNet  Google Scholar 

  41. Fridman, E.: A refined input delay approach to sampled-data control. Automatica 46, 421–427 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  42. Kharitonov, V., Niculescu, S.I., Moreno, J., Michiels, M.: Static output feedback stabilization: necessary conditions for multiple delay controllers. IEEE Trans. Autom. Control 52, 1109–1112 (2007)

    Article  Google Scholar 

  43. Krasovskii, N.N., Lidskii, E.A.: Analysis and design of controllers in systems with random attributes. Autom. Remote Control 22, 1021–1025 (1961)

    MathSciNet  Google Scholar 

  44. Kim, S., Li, H., Dougherty, E.R., Chao, N., Chen, Y., Bittner, M.L., Suh, E.B.: Can Markov chain models mimic biological regulation? J. Biol. Syst. 10, 337–357 (2002)

    Article  MATH  Google Scholar 

  45. Wang, Z., Liu, Y., Liu, X.: State estimation for jumping recurrent neural networks with discrete and distributed delays. Neural Netw. 22, 41–48 (2009)

    Article  Google Scholar 

  46. Gopalsamy, K.: Stability and Oscillations in Delay Differential Equations of Population Dynamics. Kluwer Academic, Dordrecht (1992)

    Book  MATH  Google Scholar 

  47. Li, X., Fu, X.: Effects of leakage time-varying delay on stability of nonlinear differential systems. Journal of Franklin Institute. doi:10.2016/j.jfranklin.2012.04.007

  48. Gahinet, P., Nemirovski, A., Laub, A.J., Chilali, M.: LMI Control Toolbox. The Mathworks, Natick (1995)

    Google Scholar 

  49. Liu, Z., Yu, J., Xu, D., Peng, D.: Triple-integral method for the stability analysis of delayed neural networks. Neurocomputing 99, 283–289 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The work of R. Rakkiyappan was supported by NBHM Research Project under the sanctioned No: 2/48(7)/2012/NBHM(R.P.)/R and D II/12669 and Quanxin Zhu’s work was jointly supported by the National Natural Science Foundation of China (10801056), the Natural Science Foundation of Zhejiang Province (LY12F03010) and the Natural Science Foundation of Ningbo (2012A610032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quanxin Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rakkiyappan, R., Zhu, Q. & Radhika, T. Design of sampled data state estimator for Markovian jumping neural networks with leakage time-varying delays and discontinuous Lyapunov functional approach. Nonlinear Dyn 73, 1367–1383 (2013). https://doi.org/10.1007/s11071-013-0870-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-0870-3

Keywords

Navigation