Skip to main content
Log in

Nonlinear dynamic buckling of pinned–fixed shallow arches under a sudden central concentrated load

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The structural behavior of a shallow arch is highly nonlinear, and so when the amplitude of the oscillation of the arch produced by a suddenly-applied load is sufficiently large, the oscillation of the arch may reach a position on its unstable equilibrium paths that leads the arch to buckle dynamically. This paper uses an energy method to investigate the nonlinear elastic dynamic in-plane buckling of a pinned–fixed shallow circular arch under a central concentrated load that is applied suddenly and with an infinite duration. The principle of conservation of energy is used to establish the criterion for dynamic buckling of the arch, and the analytical solution for the dynamic buckling load is derived. Two methods are proposed to determine the dynamic buckling load. It is shown that under a suddenly-applied central load, a shallow pinned–fixed arch with a high modified slenderness (which is defined in the paper) has a lower dynamic buckling load and an upper dynamic buckling load, while an arch with a low modified slenderness has a unique dynamic buckling load.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Hoff, H.J., Bruce, V.G.: Dynamic analysis of the buckling of laterally loaded flat arches. J. Math. Phys. 32(4), 276–288 (1954)

    MathSciNet  MATH  Google Scholar 

  2. Hsu, C.S.: Stability of shallow arches against snap-through under timewise step loads. J. Appl. Mech. 35(1), 31–39 (1968)

    Article  Google Scholar 

  3. Lo, D.L.C., Masur, E.F.: Dynamic buckling of shallow arches. J. Eng. Mech. Div. 102(EM3), 901–917 (1976)

    Google Scholar 

  4. Gregory, W.E. Jr., Plaut, R.H.: Dynamic stability boundaries for shallow arches. J. Eng. Mech. Div. 108(EM6), 1036–1050 (1982)

    Google Scholar 

  5. Donaldson, M.T., Plaut, R.H.: Dynamic stability boundaries of a sinusoidal shallow arch under pulse loads. AIAA J. 21(3), 469–471 (1983)

    Article  Google Scholar 

  6. Rahman, T., Jansen, E.L., Gurdal, Z.: Dynamic buckling analysis of composite cylindrical shells using a finite element based perturbation method. Nonlinear Dyn. 66(3), 389–401 (2011)

    Article  MathSciNet  Google Scholar 

  7. Fu, Y., Gao, Z., Zhu, F.: Analysis of nonlinear dynamic response and dynamic buckling for laminated shallow spherical thick shells with damage. Nonlinear Dyn. 54(4), 333–343 (2008)

    Article  MATH  Google Scholar 

  8. Goncalves, P.B., Silva, F.M.A., Del Prado, Z.J.G.N.: Global stability analysis of parametrically excited cylindrical shells through the evolution of basin boundaries. Nonlinear Dyn. 50(1–2), 121–145 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Noijen, S.P.M., Mallon, N.J., Fey, R.H.B.: Periodic excitation of a buckled beam using a higher order semi-analytic approach. Nonlinear Dyn. 50(1–2), 325–339 (2007)

    Article  MATH  Google Scholar 

  10. Goncalves, P.B., Del Prado, Z.J.G.N.: Low-dimensional Galerkin models for nonlinear vibration and instability analysis of cylindrical shells. Nonlinear Dyn. 41(1–3), 129–145 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Odeh, G.: Nonlinear dynamics of shallow spherical caps subjected to peripheral loading. Nonlinear Dyn. 33(2), 155–164 (2003)

    Article  MATH  Google Scholar 

  12. Matsunaga, H.: In-plane vibration and stability of shallow circular arches subjected to axial forces. Int. J. Solids Struct. 33(4), 469–482 (1996)

    Article  MATH  Google Scholar 

  13. Huang, C.S., Nieh, K.Y., Yang, M.C.: In-plane free vibration and stability of loaded and shear deformable circular arches. Int. J. Solids Struct. 40(22), 5865–5886 (2003)

    Article  MATH  Google Scholar 

  14. Mallon, N.J., Fey, R.H.B., Nijmeijer, H., Zhang, G.Q.: Dynamic buckling of a shallow arch under shock loading considering effects of the arch shape. Int. J. Non-Linear Mech. 41, 1057–1067 (2006)

    Article  Google Scholar 

  15. Pi, Y.-L., Bradford, M.A., Liang, S.G.: Energy approach for dynamic buckling of an arch model under step loading with infinite duration. Int. J. Struct. Stab. Dyn. 10(3), 411–439 (2010)

    Article  MathSciNet  Google Scholar 

  16. Kounadis, A.N., Raftoyiannis, J., Mallis, J.: Dynamic buckling of an arch model under impact loading. J. Sound Vib. 134(2), 193–202 (1989)

    Article  Google Scholar 

  17. Kounadis, A.N., Gantes, C.J., Bolotin, V.V.: Dynamic buckling loads of autonomous potential system based on the geometry of the energy surface. Int. J. Eng. Sci. 37, 1611–1628 (1999)

    Article  MATH  Google Scholar 

  18. Kounadis, A.N.: A geometric approach for establishing dynamic buckling load of autonomous potential two-degree-of-freedom systems. J. Appl. Mech. 66(3), 55–61 (1999)

    Article  MathSciNet  Google Scholar 

  19. Kounadis, A.N., Gantes, C.J., Raftoyiannis, I.G.: A geometric approach for establishing dynamic buckling load of autonomous potential N-degree-of-freedom systems. Int. J. Non-Linear Mech. 39, 1635–1646 (2004)

    Article  MATH  Google Scholar 

  20. Kounadis, A.N., Raftoyiannis, I.G.: Dynamic buckling of a 2-DOF imperfect system with symmetric imperfections. Int. J. Non-Linear Mech. 40(10), 1229–1237 (2005)

    Article  MATH  Google Scholar 

  21. Kounadis, A.N.: Nonlinear dynamic buckling and stability of autonomous dissipative discrete structural systems: potential systems. In: Koundas, A.N., Krätzig, W.B. (eds.) Nonlinear Stability of Structures. Theory and Computational Techniques. International Centre for Mechanical Science, Course and Lectures, vol. 342, pp. 95–142. Springer, New York (1995)

    Google Scholar 

  22. Raftoyiannis, I.G., Constantakopoulos, T.G., Michaltsos, G.T., Kounadis, A.N.: Dynamic buckling of a simple geometrically imperfect frame using catastrophe theory. Int. J. Mech. Sci. 48(10), 1021–1030 (2006)

    Article  MATH  Google Scholar 

  23. Sophianopoulos, D.S., Michaltsos, G.T., Kounadis, A.N.: The effect of infinitesimal damping on the dynamic instability mechanism of conservative systems. Math. Probl. Eng. 2008, 471080 (2008)

    Article  MathSciNet  Google Scholar 

  24. Pinto, O.C., Goncalves, P.B.: Non-linear control of buckled beams under step loading. Mech. Syst. Signal Process. 14(6), 967–985 (2000)

    Article  Google Scholar 

  25. Integrated System Research: Designing Mechanical Systems for Suddenly Applied Loads. Integrated System Research, Inc., Hamilton (2003)

    Google Scholar 

  26. Simitses, G.J.: Dynamic Stability of Suddenly Loaded Structures. Springer, New York (1990)

    Book  MATH  Google Scholar 

  27. Levitas, J., Singer, J., Weller, T.: Global dynamic stability of a shallow arch by Poincare-like simple cell mapping. Int. J. Non-Linear Mech. 32(2), 411–424 (1997)

    Article  MATH  Google Scholar 

  28. Pi, Y.-L., Bradford, M.A.: Nonlinear dynamic buckling of shallow circular arches under a sudden uniform radial load. J. Sound Vib. 331, 4199–4217 (2012)

    Article  Google Scholar 

  29. Pi, Y.-L., Bradford, M.A.: Dynamic buckling of shallow pin-ended arches under a sudden central concentrated load. J. Sound Vib. 317(3–5), 898–917 (2008)

    Article  Google Scholar 

  30. Pi, Y.-L., Bradford, M.A., Qu, W.L.: Energy approach for dynamic buckling of shallow fixed arches under step loading with infinite duration. Struct. Eng. Mech. 35(5), 555–570 (2010)

    Google Scholar 

  31. Pi, Y.-L., Bradford, M.A.: Non-linear in-plane analysis and buckling of pinned–fixed shallow arches subjected to a central concentrated load. Int. J. Non-Linear Mech. 47, 118–131 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Australian Research Council through Discovery Projects (DP1096454 and DP1097096) awarded to first two authors and an Australian Laureate Fellowship (FL100100063) awarded to the second author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Lin Pi.

Appendix: Coefficients A 2, B 2 and C 2

Appendix: Coefficients A 2, B 2 and C 2

The coefficients A 2, B 2, and C 2 in Eq. (33) are given by

(47)
(48)

and

(49)

in which \(K'_{i}=\mbox{d}K_{i}/\mbox{d}\beta\) (i=2,3,4,5), K 6=2β+cos2βsin2β, K 7=3sinβ+2βcosβ+sin3βK 8=5cosβ−2βsinβ+3cos3β, K 10=β−cosβsinβ, and K 11=β 2+βcosβsinβ−2sinβ 2.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pi, YL., Bradford, M.A. Nonlinear dynamic buckling of pinned–fixed shallow arches under a sudden central concentrated load. Nonlinear Dyn 73, 1289–1306 (2013). https://doi.org/10.1007/s11071-013-0863-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-0863-2

Keywords

Navigation