Skip to main content
Log in

A Generalized Nash–Cournot Model for the Northwestern European Natural Gas Markets with a Fuel Substitution Demand Function: The GaMMES Model

  • Published:
Networks and Spatial Economics Aims and scope Submit manuscript

Abstract

This article presents a dynamic Generalized Nash–Cournot model to describe the evolution of the natural gas markets. The major players along the gas chain are depicted including: producers, consumers, storage and pipeline operators, as well as intermediate local traders. Our economic structure description takes into account market power and the demand representation tries to capture the possible fuel substitution that can be made between the consumption of oil, coal, and natural gas in the overall fossil energy consumption. We also take into account long-term contracts in an endogenous way, which makes the model a Generalized Nash Equilibrium problem. We discuss some means to solve such problems. Our model has been applied to represent the European natural gas market and forecast, until 2030, after a calibration process, consumption, prices, production, and natural gas dependence. A comparison between our model, a more standard one that does not take into account energy substitution, and the European Commission natural gas forecasts is carried out to analyze our results. Finally, in order to illustrate the possible use of fuel substitution, we studied the evolution of the natural gas price as compared to the coal and oil prices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. GDF-SUEZ produces 4.4% of its natural gas supplies (GDF-SUEZ 2009).

  2. We will call burner a technology that can use either coal, oil or natural gas. Note that our approach concerns the primary natural gas consumption (not only the electricity generation demand).

  3. There are no storage losses in the model. They can easily be taken into account by increasing the transportation losses of the arcs that start at the storage nodes.

  4. The Norwegian sales are not taken into account in the foreign supplies for security of supply reasons.

  5. Shale gas production is expected to be negligeable in Europe due to environmental concerns, for instance. As of now, few credible assumptions exist concerning the development of European domestic shale reserves (Stevens 2010).

References

  • Abada I, Massol O (2011) Security of supply and retail competition in the European gas market. Some model-based insights. Energy Policy 39:4077–4088

    Article  Google Scholar 

  • Abada I, Briat V, Massol O (2011) Construction of a fuel demand function portraying interfuel substitution, a system dynamics approach. Economix Working Paper, available at http://economix.fr/fr/dt/2011.php

  • Abrell J, Weigt H (2011) Combining energy networks. Netw Spat Econ. doi:10.1007/s11067-011-9160-0

  • Aune FR, Rosendahl KE, Sagen EL (2009) Globalisation of natural gas markets—effects on prices and trade patterns. Energy J (Special Issue) 30:39–54

    Google Scholar 

  • Boots MG, Rijkers FAM, Hobbs BF (2004) Trading in the downstream European gas market: a successive oligopoly approach. Energy J 25(3):73–102

    Google Scholar 

  • BP Statistical Review of World Energy (2009) www.bp.com

  • Brito DL, Rosellón J (2010) Lumpy investment in regulated natural gas pipelines: an application of the theory of the second best. Netw Spat Econ 11(3):533–553

    Article  Google Scholar 

  • Egging R, Gabriel SA (2006) Examining market power in the European natural gas market. Energy Policy 34(17):2762–2778

    Article  Google Scholar 

  • Egging R, Holz F, Gabriel SA (2010) The world gas model: a multi-period mixed complementarity model for the global natural gas market. Energy 35(10):4016–4029

    Article  Google Scholar 

  • European Commission (2007) DG competition report on energy sector inquiry 2007. Office for Official Publ. of the Europ. Communities, Luxembourg. Available at http://ec.europa.eu/dgs/energy

  • European Commission (2008) European energy and transport: trends to 2030, update 2007. Office for Official Publ. of the Europ. Communities, Luxembourg. Available at http://ec.europa.eu/dgs/energy_transport/figures/trends_2030_update_2007/

  • Facchinei F, Pang J-S (2003) Finite-dimensional variational inequalities and complementarity problems. Springer, New York

    Google Scholar 

  • Ferris MC, Munson TS (1987) The PATH solver. Elsevier, Amsterdam

    Google Scholar 

  • Gabriel SA, Manik J, Vikas S (2003) Computational experience with a large-scale, multi-period, spatial equilibrium model of the North American natural gas system. Netw Spat Econ 3(2):97–122

    Article  Google Scholar 

  • Gabriel SA, Kiet S, Zhuang J (2005a) A mixed complementarity-based equilibrium model of natural gas markets. Oper Res 53(5):799–818

    Article  Google Scholar 

  • Gabriel SA, Zhuang J, Kiet S (2005b) A Large-scale complementarity model of the North American gas market. Energy Econ 27:639–665

    Article  Google Scholar 

  • GDF-SUEZ reference document (2009) http://www.gdfsuez.com/

  • Golombek R, Gjelsvik E, Rosendahl KE (1995) Effects of liberalizing the natural gas markets in Western Europe. Energy J 16:85–111

    Google Scholar 

  • Harker PT (1991) Generalized Nash games and quasi-variational inequalities. Eur J Oper Res 54:81–94

    Article  Google Scholar 

  • Harker PT, Pang J (1998) Finite-dimensional variational inequality and nonlinear complementarity problems: a survey of theory, algorithms and applications. Math Program (North-Holland) 48(1990):161–220

    Google Scholar 

  • Holz F, von Hirschhausen C, Kemfert C (2008) A strategic model of European gas supply (GASMOD). Energy Econ 30:766–788

    Article  Google Scholar 

  • Hubbard RG, Weiner RJ (1986) Regulation and long-term contracting in U.S. natural gas markets. J Ind Econ 35(1):71–79

    Article  Google Scholar 

  • International Energy Agency (2004) Natural gas information 2004. OECD/IEA, Paris

    Google Scholar 

  • International Energy Agency (2009a) Natural gas information 2009. OECD/IEA, Paris

    Google Scholar 

  • International Energy Agency (2009b) World energy outlook 2009. OECD/IEA

  • International Gas Union (2011) New trends in gas price formation. In: Gastech conference, Amsterdam

  • Lise W, Hobbs BF (2008) Future evolution of the liberalised European gas market. Simulation results with the dynamic GASTALE model. Energy Policy 36(6):1890–1906

    Article  Google Scholar 

  • Lise W, Hobbs BF (2009) A dynamic simulation of market power in the liberalised European natural gas market. Energy J 30:119–136

    Google Scholar 

  • Mathiesen L, Roland K, Thonstad K (1987) The European natural gas market: degrees of market power on the selling side. In: Golombek R, Hoel M, Vislie J (eds) Natural gas markets and contracts. North-Holland

  • Moxnes E (1987) The dynamics of Interfuel Substitution in the OECD-Europe industrial sector. Elsevier Science, Amsterdam

    Google Scholar 

  • Perner J, Seeliger A (2004) Prospects of gas supplies to the European market until 2030. Results from the simulation model EUGAS. Utilities Policy 12(4):291–302

    Article  Google Scholar 

  • Rice University (2004) www.rice.edu/energy/publications/docs/GSP_WorldGasTradeModel_Part1_05_26_04.pdf

  • Smeers Y (2003) Market incompleteness in regional electricity transmission. Part I: the forward market. Netw Spat Econ 3(2):151–174

    Article  Google Scholar 

  • Smeers Y (2008) Gas models and three difficult objectives. ECORE discussion paper available at http://www.ecore.be/

  • Smeers Y, Oggioni G, Allevi E, Schaible S (2011) A generalized Nash equilibrium model of market coupling in the European power system. Netw Spat Econ. doi:10.1007/s11067-011-9166-7

  • Stevens P (2010) The ‘Shale Gas Revolution’: hype and reality. A Chatham House report

Download references

Acknowledgements

We are grateful to Pierre-André Jouvet for his helpful comments and advice. All errors present in the article are those of the authors. The views expressed herein are strictly those of the authors and are not to be construed as representing those of EDF, University of Maryland, Université Paris 10 or the IFP Energies nouvelles.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibrahim Abada.

Appendix A

Appendix A

This appendix presents the KKT conditions derived from our model. Once the KKT conditions are written, we get the Mixed Complementarity Problem (MCP) given below.

The producers KKT conditions

$$ \begin{array}{rll} \forall t,\ m,\ f,\ p,\ i,\ {\kern-20pt}0 \leq zp^t_{mfpi} {\kern-24pt}&\,\bot \;\; \delta^t \eta_{pi}-\gamma^t_{mfp} {\kern40pt} \leq 0{\kern-22pt} \\ & - \epsilon 2^t_{mfpi}-\eta p^t_{pi} \\ & -\sum\limits_n M2_{in}\alpha p^t_{mpn} \end{array} $$
(21a)
$$ \begin{array}{rll} \forall t,\ m,\ f,\ p,\ d,\ 0 \leq x^t_{mfpd} \, \bot \;\;& \delta^t p^t_{md}\big(x^t_{mfpd}+\overline{x^t_{mfpd}}\,\big) & \leq 0 \\ & +\delta^{t}\frac{\partial p^{t}_{md}}{\partial x^t_{mfpd}} & \\ & \times\big(x^t_{mfpd}+\overline{x^t_{mfpd}}\,\big)x^{t}_{mfpd} & \\ & -\gamma^t_{mfp}-\epsilon 1^t_{mfpd} & \\ & -\sum\limits_n M3_{dn} \alpha p^t_{mpn} & \\ \end{array} $$
(21b)
$$ \begin{array}{rll} \forall t,\ m,\ f,\ p, 0 \leq q^t_{mfp} \, \bot \;\;& -\sum\limits_{t'\geq t} \delta^{t'} \frac{\partial Pc_f}{\partial q} & \leq 0 \\ & \times\left(\,\sum\limits_{t''\leq t'} \sum\limits_m q^{t''}_{mfp},Rf_f\right) & \\ & + \sum\limits_{t'> t} \delta^{t'} \frac{\partial Pc_f}{\partial q} & \\ & \times\left(\,\sum\limits_{t''< t'} \sum\limits_m q^{t''}_{mfp},Rf_f\right) & \\ & - \sum\limits_{t' \geq t} \phi^{t'}_f- \chi^t_{mf} +\gamma^t_{mfp}& \\ &-(-1)^m \big(\vartheta1^t_{f}- \vartheta2^t_{f}\big) & \\ &-\epsilon 3^t_{mfp} +\sum\limits_n M1_{fn} \alpha p^t_{mpn} & \\[4pt] \end{array} $$
(21c)
$$ \begin{array}{rll} \forall t,\ f,\ p, 0 \leq ip^t_{fp} \, \bot \;\; & -\delta^{t} Ip_f-\epsilon 4^t_{fp} & \leq 0 \\ & +\sum\limits_m \sum\limits_{t'\geq t+delay_p} & \\ & \times\chi^{t'}_{mf}(1-dep_f)^{t'-t} & \\ & -\iota p^t_f + Lf_f \sum\limits_{t'\geq t+delay_p} & \\ & \times\iota p^{t'}_{f}(1-dep_f)^{t'-t} & \\ \end{array} $$
(21d)
$$ \forall t,\ p,\ i, 0 \leq up_{pi} \, \bot \;\; \sum\limits_t \eta p^t_{pi}- \eta_{pi} \;\, \leq 0 $$
(21e)
$$ \forall t,\ f, 0 \leq \phi^t_f \, \bot \;\; \sum\limits_p\sum\limits_{t'\leq t} \sum\limits_m q^{t'}_{mfp} - Rf_f \;\, \leq 0 $$
(21f)
$$ \begin{array}{rll} \forall t,\ m,\ f,\ \;\, 0 \leq \chi^t_{mf} \;\, \bot \;\, & \sum\limits_p q^t_{mfp} - Kf_f (1-dep_f)^{t} &\;\, \leq 0 \\ & - \sum\limits_p \sum\limits_{t'\leq t-delay_p} & \\ & \times ip^{t'}_{fp}(1-dep_f)^{t-t'} & \\[5pt] \end{array} $$
(22a)
$$ \begin{array}{rll} \forall t,\ m,\ f,\ p,\ \;\, 0 \leq \gamma^t_{mfp} \;\, \bot \;\, & -q^t_{mfp}+\sum\limits_i zp^t_{mfpi}& \;\, \leq 0 \\[-3pt] & +\sum\limits_d x^t_{mfpd} & \\[5pt] \end{array} $$
(22b)
$$ \forall t,\ f,\ \;\, 0 \leq \vartheta1^t_{f} \;\, \bot \;\, \sum\limits_m \sum\limits_p (-1)^m q^t_{mfp} -f\/l_f \;\, \leq 0 $$
(22c)
$$ \forall t,\ f, \, 0 \leq \vartheta2^t_{f} \;\, \bot \;\, -\sum\limits_m \sum\limits_p (-1)^m q^t_{mfp} -f\/l_f \;\, \leq 0 $$
(22d)
$$ \begin{array}{rll} \forall t,\ f,\ \;\, 0 \leq \iota p^t_{f} \;\, \bot \;\, & \sum\limits_p ip^t_{fp} &\;\, \leq 0 \\[-3pt] & - Lf_f Kf_f (1-dep_f)^{t} & \\[-3pt] & -Lf_f \sum\limits_p \sum\limits_{t'\leq t-delay_p} & \\[-3pt] & \times ip^{t'}_{fp}(1-dep_f)^{t-t'} & \\[5pt] \end{array} $$
(22e)
$$ \forall t,\ f, m,\ p,\ d,\ \;\, 0 \leq \epsilon 1^t_{mfpd} \;\, \bot \;\, x^t_{mfpd}-O_{fp} H \;\, \leq 0 $$
(22f)
$$ \forall t,\ m, f,\ p,\ i, \, 0 \leq \epsilon 2^t_{mfpi} \;\, \bot \;\, zp^t_{mfpi}-O_{fp} H \;\, \leq 0 $$
(22g)
$$ \forall t,\ m, f,\ p,\ \;\, 0 \leq \epsilon 3^t_{mfp} \;\, \bot \;\, q^t_{mfp}-O_{fp} H \;\, \leq 0 $$
(22h)
$$ \forall t,\ f,\ p,\ \;\, 0 \leq \epsilon 4^t_{fp} \;\, \bot \;\, ip^t_{fp}-O_{fp} H \;\, \leq 0 $$
(22i)
$$ \begin{array}{rll} \forall t,\ m,\ p,\ n, \; \mbox{free }\;\, \alpha p^t_{mpn} \;\, & \sum\limits_{a} M_6(a,n)fp^t_{mpa} (1-loss_a)&\!\!\!\!=0 \\ &-\sum\limits_{a} M5_{an}fp^t_{mpa} +\sum\limits_f M1_{fn} q^t_{mpf} & \\ & -\sum\limits_d \sum\limits_f M3_{dn} x^t_{mfpd} & \\ & -\sum\limits_i \sum\limits_f M2_{in} zp^t_{mfpi} & \end{array} $$
(22j)
$$ \forall t,\ p,\ i, \; \mbox{free }\;\, \eta p^t_{pi} \;\, up_{pi}-\sum\limits_{f,m} zp^t_{mfpi} \;\, = 0 $$
(23a)
$$ \forall \ p,\ i,\ \;\, \mbox{free } \;\, \eta_{pi} \;\, ui_{pi}-up_{pi} \;\, =0 $$
(23b)

The independent traders’ KKT conditions

$$ \begin{array}{rll} \forall t,\ m,\ p,\ i, \, 0 \leq zi^t_{mpi} \;\, \bot \;\, & -\delta^t \eta_{pi} - \eta i^t_{pi} &\;\, \leq 0 \\[-3pt] & +\psi^t_{mi} & \\[-3pt] & +\sum\limits_n M2_{in} \alpha i^t_{min} & \\[-3pt] & +(1-min_{pi})\upsilon^t_{mpi} & \\[3pt] \end{array} $$
(24a)
$$ \begin{array}{rll} \forall t,\ m,\ i,\ d, \, 0 \leq y^t_{mid} \;\, \bot\;\, & \delta^t p^t_{md}\big(y^t_{mfpd}+\overline{y^t_{mfpd}}\,\big) & \leq 0 \\[-3pt] & \delta^{t} \frac{\partial p^{t}_{md}}{\partial y^t_{mid}}\big(y^t_{mfpd}+\overline{y^t_{mfpd}}\,\big)y^{t}_{mid}& \\[-3pt] & -\psi^t_{mi}-\sum\limits_{n} M3_{dn} \alpha i^t_{min} & \\[3pt] \end{array} $$
(24b)
$$ \forall t,\ i,\ s,\ \;\, 0 \leq r^t_{is} \;\, \bot \;\, -\delta^t Rc_s +\mu^t_{is} - \beta s^t_s \;\, \leq 0 $$
(24c)
$$ \begin{array}{rll} \forall t,\ i,\ s,\ \;\, 0 \leq in^t_{is} \;\, \bot \;\, & -\delta^t (Ic_s+ Wc_s) & \leq 0 \\[-3pt] & -\mu^t_{is}-\sum\limits_m (-1)^{m} \psi^t_{mi} & \\[-3pt] & -\sum\limits_{n} M4_{sn} \alpha i^t_{min} (-1)^m & \\[3pt] \end{array} $$
(24d)
$$ \forall t,\ p,\ i,\ \;\, 0 \leq ui_{pi} \;\, \bot \;\, \sum\limits_t \eta i^t_{pi} + \eta_{pi} \;\, \leq 0 $$
(24e)
$$ \forall t,\ m,\ i,\ {\kern-10pt} \;\,\mbox{free} \;\,\psi^t_{mi}{\kern-10pt} {\kern-20pt}\sum\limits_p zi^t_{mpi}-\sum\limits_d y^t_{mid}+(-1)^m\sum\limits_s in^t_{is} =0 $$
(25a)
$$ \forall t,\ i,\ s,\ \;\, 0 \leq \mu^t_{is} \;\, \bot \;\, in^t_{is}-r^t_{is} \;\, \leq 0 $$
(25b)
$$ \begin{array}{rll} \forall t,\ m,\ i,\ n,\ \;\,\mbox{free} \;\,\alpha i^t_{min} &\sum\limits_{a} M6_{an}f\/i^t_{mia}(1-loss_a) &=0 \\[-3pt] &-\sum\limits_{a} M5_{an}f\/i^t_{mia} & \\[-3pt] &-\sum\limits_d M3_{dn} y^t_{mid} & \\[-3pt] & +\sum\limits_p M2_{in} zi^t_{mpi} & \\[-3pt] & -(-1)^m \sum\limits_s M4_{sn} in^t_{is} & \end{array} $$
(25c)
$$ \forall t,\ p,\ i,\ \;\, \mbox{free } \;\, \eta i^t_{pi} \;\, ui_{pi}-\sum\limits_m zi^t_{mpi} \;\, =0 $$
(25d)
$$ \forall \ p,\ i,\ \;\, \mbox{free } \;\, \eta_{pi} \;\, ui_{pi}-up_{pi} \;\, =0 $$
(25e)
$$ \forall t,\ m,\ p,\ i,\ \;\, 0 \leq \upsilon^t_{mpi} \;\, -zi^t_{mpi} + min_{pi} \sum\limits_m zi^t_{mpi} \;\, \leq 0 $$
(25f)
$$ \forall t,\ s, \, 0 \leq \beta s^t_s \;\, \bot \;\, \sum\limits_i r^t_{is}-Ks_s-\sum\limits_{t'\leq t-delay_s} is^{t'}_s \;\, \leq 0 $$
(25g)

The pipeline operator KKT conditions

$$ \begin{array}{rll} \forall t,\ m,\ p,\ a,\ \;\, 0 \leq fp^t_{mpa} \;\, \bot \;\, & -\delta^t \big(Tc_{a}+\tau^t_{ma}\big) - \tau^t_{ma} &\;\, \leq 0 \\[-3.5pt] & +\sum\limits_n M6_{an} \alpha p^t_{mpn} (1-loss_a) &\\[-3.5pt] & -\sum\limits_n M5_{an} \alpha p^t_{mpn} & \\[3pt] \end{array} $$
(26a)
$$ \begin{array}{rll} \forall t,\ m,\ i,\ a,\ \;\, 0 \leq f\/i^t_{mia} \;\, \bot \;\,& -\delta^t \big(Tc_{a}+\tau^t_{ma}\big) - \tau^t_{ma} & \;\, \leq 0 \\[-3.5pt] &+\sum\limits_n M6_{an} \alpha i^t_{min} (1-loss_a) & \\[-3.5pt] & -\sum\limits_n M5_{an} \alpha i^t_{min} & \\[3pt] \end{array} $$
(26b)
$$ \begin{array}{rll} \forall t,\ a,\ \;\, 0 \leq ik^t_{a} \;\, \bot \;\,& -\delta^{t} Ik_{a}+\sum\limits_{t'\geq t+delay_i} \tau^{t'}_{ma} & \;\, \leq 0 \\[-3.5pt] & -\iota a^t_a + La_a \sum\limits_{t'\geq t+delay_i} \iota a^{t'}_{a} & \\[3pt] \end{array} $$
(26c)
$$ \begin{array}{rll} \forall t,\ m,\ a,\ \;\,0 \leq \tau^t_{ma} \;\,\bot\;\, &\sum\limits_p fp^t_{mpa}+ \sum\limits_i f\/i^t_{mia}&\leq 0 \\[-3.5pt] &-Tk_{a}-\sum\limits_{t'\leq t-delay_i} ik^t_{a}& \\[3pt] \end{array} $$
(26d)
$$ \forall t,\ a,\ \;\, 0 \leq \iota a^t_{a} \;\, \bot \;\, ik^t_{a}-Tk_{a}-\sum\limits_{t'\leq t-delay_i} ik^t_{a} \;\, \leq 0 $$
(26e)
$$ \begin{array}{rll} {\kern-6pt}\forall t,\ m,\ p,\ n, \;\mbox{free} \;\,\alpha p^t_{mpn} &\sum\limits_{a} M_6(a,n)fp^t_{mpa} (1\!-\!loss_a) &=0 \\[-3.5pt] &\!-\!\sum\limits_{a} M5_{an}fp^t_{mpa} \!+\!\sum\limits_f M1_{fn} q^t_{mpf} &\\[-3.5pt] &-\sum\limits_d \sum\limits_f M3_{dn} x^t_{mfpd} & \\[-3.5pt] & -\sum\limits_i \sum\limits_f M2_{in} zp^t_{mfpi} & \end{array} $$
(26f)
$$ \begin{array}{rll} \forall t,\ m,\ i,\ n,\ \;\, \mbox{free } \;\, \alpha i^t_{min} \;\, & \sum\limits_{a} M6_{an}f\/i^t_{mia}(1-loss_a) &\;\, =0 \\ &-\sum\limits_{a} M5_{an}f\/i^t_{mia} -\sum\limits_d M3_{dn} y^t_{mid} & \\ & +\sum\limits_p M2_{in} zi^t_{mpi} & \\ & -(-1)^m \sum\limits_s M4_{sn} in^t_{is} & \end{array} $$
(27)

The storage operator KKT conditions

$$ \begin{array}{rll} \forall t,\ s, \;\, 0 \leq is^t_s \;\, \bot \;\,& -\delta^{t} Is_s+\sum\limits_{t'\geq t+delay_s} \beta s^{t'}_s & \;\, \leq 0 \\ & -\iota s^t_s + Ls_s \sum\limits_{t'\geq t+delay_s} \iota s^{t'}_{s} & \\ \end{array} $$
(28a)
$$ \forall t,\ s, \, 0 \leq \beta s^t_s \;\, \bot \;\, \sum\limits_i r^t_{is}-Ks_s-\sum\limits_{t'\leq t-delay_s} is^{t'}_s \;\, \leq 0 $$
(28b)
$$ \forall t,\ s, \, 0 \leq \iota s^t_s \;\, \bot \;\, is^t_{s}-Ls_s Ks_s- Ls_s\sum\limits_{t'\leq t-delay_s} is^{t'}_s \;\, \leq 0 $$
(28c)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abada, I., Gabriel, S., Briat, V. et al. A Generalized Nash–Cournot Model for the Northwestern European Natural Gas Markets with a Fuel Substitution Demand Function: The GaMMES Model. Netw Spat Econ 13, 1–42 (2013). https://doi.org/10.1007/s11067-012-9171-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11067-012-9171-5

Keywords

Navigation