Skip to main content

Advertisement

Log in

Intranasal Administration of GDNF Protects Against Neural Apoptosis in a Rat Model of Parkinson’s Disease Through PI3K/Akt/GSK3β Pathway

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Glial cell line-derived neurotrophic factor (GDNF) plays important roles in protecting the damaged or dying dopamine neurons in the animal models of Parkinson’s disease (PD). This study was to determine the effect and mechanisms of GDNF on the apoptosis of neurons in 6-hydroxydopamine (6-OHDA) induced Parkinson’s disease model of rats. Healthy male Sprague–Dawley rats (220–240 g) were randomly divided into six groups (n = 10). 6-OHDA was used to establish the PD rat model. Tyrosine hydroxylase (TH) immunohistochemistry was used to assess the neuron loss in 6-OHDA-lesioned rats. TUNEL and western blot were used to identify the effects and mechanisms of GDNF in the rat model of PD. The numbers of TH-positive neurons in the 6-OHDA-injected lesioned substantia nigra (SN) decreased significantly compared with the Sham group. GDNF treatment effectively ameliorated the apoptosis of neuronal cells in SN induced by 6-OHDA. In addition, GDNF significantly increased serine protein kinase B (Akt) and glycogen synthase kinase 3 beta (GSK3β) phosphorylation induced by 6-OHDA. In contrast, application of LY294002 or triciribine reversed the roles of GDNF in PD models. The results implicated that the anti-apoptosis effects of GDNF in neurons might be mediated through PI3K/Akt/GSK3β pathway. Therefore, GDNF may be a promising agent for PD treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39:889–909

    Article  CAS  PubMed  Google Scholar 

  2. Shimohama S, Sawada H, Kitamura Y, Taniguchi T (2003) Disease model: Parkinson’s disease. Trends Mol Med 9:360–365

    Article  CAS  PubMed  Google Scholar 

  3. Zhu G, Wang X, Wu S, Li X, Li Q (2014) Neuroprotective effects of puerarin on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine induced Parkinson’s disease model in mice. Phytother Res 28:179–186

    Article  CAS  PubMed  Google Scholar 

  4. Perier C, Bové J, Wu DC, Dehay B, Choi DK, Jacksonlewis V, Rathkehartlieb S, Bouillet P, Strasser A, Schulz JB (2007) Two molecular pathways initiate mitochondria-dependent dopaminergic neurodegeneration in experimental Parkinson’s disease. Proc Natl Acad Sci USA 104:8161–8166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nikam S, Nikam P, Ahaley SK, Sontakke AV (2003) Oxidative stress in Parkinson’s disease. Indian J Clin Biochem 24:98–101

    Article  Google Scholar 

  6. Adams JD (2012) Parkinson’s disease-apoptosis and dopamine oxidation. Open J Apoptosis 1:1–8

    Article  CAS  Google Scholar 

  7. Airaksinen MS, Saarma M (2002) The GDNF family: signalling, biological functions and therapeutic value. Nat Rev Neurosci 3:383–394

    Article  CAS  PubMed  Google Scholar 

  8. Lin LF, Doherty DH, Lile JD, Bektesh S, Collins F (1993) GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 260:1130–1132

    Article  CAS  PubMed  Google Scholar 

  9. Revishchin A, Moiseenko L, Kust N, Bazhenova N, Teslia P, Panteleev D, Kovalzon V, Pavlova G (2016) Effects of striatal transplantation of cells transfected with GDNF gene without pre- and pro-regions in mouse model of Parkinson’s disease. BMC Neurosci 17:1–15

    Article  Google Scholar 

  10. Aron L, Klein R (2011) Repairing the parkinsonian brain with neurotrophic factors. Trends Neurosci 34:88–100

    Article  CAS  PubMed  Google Scholar 

  11. Drinkut A, Tillack K, Meka DP, Schulz JB, Kügler S, Kramer ER (2016) Ret is essential to mediate GDNF’s neuroprotective and neuroregenerative effect in a Parkinson disease mouse model. Cell Death Dis 7:e2359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Grondin R (2002) Chronic, controlled GDNF infusion promotes structural and functional recovery in advanced parkinsonian monkeys. Brain 125:2191–2201

    Article  PubMed  Google Scholar 

  13. Kitagishi Y (2014) Dietary regulation of PI3K/AKT/GSK-3β pathway in Alzheimer’s disease. Alzheimers Res Ther 6:35–35

    Article  PubMed  PubMed Central  Google Scholar 

  14. Chen L, Wei X, Hou Y, Liu X, Li S, Sun B, Liu X, Liu H (2014) Tetramethylpyrazine analogue CXC195 protects against cerebral ischemia/reperfusion-induced apoptosis through PI3K/Akt/GSK3β pathway in rats. Neurochem Int 66:27–32

    Article  CAS  PubMed  Google Scholar 

  15. Qi Z, Xu Y, Liang Z, Li S, Wang J, Wei Y, Dong B (2015) Baicalein alters PI3K/Akt/GSK3β signaling pathway in rats with diabetes-associated cognitive deficits. Int J Clin Exp Med 8:1993–2000

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Sestito S, Nesi G, Daniele S, Martelli A, Digiacomo M, Borghini A, Pietra D, Calderone V, Lapucci A, Falasca M (2015) Design and synthesis of 2-oxindole based multi-targeted inhibitors of PDK1/Akt signaling pathway for the treatment of glioblastoma multiforme. Eur J Med Chem 105:274–288

    Article  CAS  PubMed  Google Scholar 

  17. Fayard E, Xue G, Parcellier A, Bozulic L, Hemmings BA (2010) Protein kinase B (PKB/Akt), a key mediator of the PI3K signaling pathway. Curr Top Microbiol Immunol 346:31–56

    CAS  PubMed  Google Scholar 

  18. Liu F, Gong X, Zhang G, Marquis K, Reinhart P, Andree TH (2005) The inhibition of glycogen synthase kinase 3β by a metabotropic glutamate receptor 5 mediated pathway confers neuroprotection to Aβ peptides. J Neurochem 95:1363–1372

    Article  CAS  PubMed  Google Scholar 

  19. Noël A, Barrier L, Rinaldi F, Hubert C, Fauconneau B, Ingrand S (2011) Lithium chloride and staurosporine potentiate the accumulation of phosphorylated glycogen synthase kinase 3β/Tyr216, resulting in glycogen synthase kinase 3β activation in SH-SY5Y human neuroblastoma cell lines. J Neurosci Res 89:755–763

    Article  PubMed  Google Scholar 

  20. Luo J (2009) Glycogen synthase kinase 3beta (GSK3beta) in tumorigenesis and cancer chemotherapy. Cancer Lett 273:194–200

    Article  CAS  PubMed  Google Scholar 

  21. Yang Y, Wang H, Wang S, Xu M, Liu M, Liao M, Frank JA, Adhikari S, Bower KA, Shi X (2012) GSK3β signaling is involved in ultraviolet B-induced activation of autophagy in epidermal cells. Int J Oncol 41:1782–1788

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Kim SN, Kim ST, Doo AR, Park JY, Moon W, Chae Y, Yin CS, Lee H, Park HJ (2011) Phosphatidylinositol 3-kinase/Akt signaling pathway mediates acupuncture-induced dopaminergic neuron protection and motor function improvement in a mouse model of Parkinson’s disease. Int J Neurosci 121:562–569

    Article  CAS  PubMed  Google Scholar 

  23. Yang Y, Gehrke S, Haque ME, Imai Y, Kosek J, Yang L, Beal MF, Nishimura I, Wakamatsu K, Ito S (2005) Inactivation of Drosophila DJ-1 leads to impairments of oxidative stress response and phosphatidylinositol 3-kinase/Akt signaling. Proc Natl Acad Sci USA 102:13670–13675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lundblad M, Andersson M, Winkler C, Kirik D, Wierup N, Cenci MA (2002) Pharmacological validation of behavioural measures of akinesia and dyskinesia in a rat model of Parkinson’s disease. Eur J Neurosci 15:120–132

    Article  CAS  PubMed  Google Scholar 

  25. Migliore MM, Vyas TK, Campbell RB, Amiji MM, Waszczak BL (2010) Brain delivery of proteins by the intranasal route of administration: a comparison of cationic liposomes versus aqueous solution formulations. J Pharm Sci 99:1745–1761

    Article  CAS  PubMed  Google Scholar 

  26. Cheng YF, Zhu GQ, Wang M, Cheng H, Zhou A, Wang N, Fang N, Wang XC, Xiao XQ, Chen ZW (2008) Involvement of ubiquitin proteasome system in protective mechanisms of Puerarin to MPP+-elicited apoptosis. Neurosci Res 63:52–58

    Article  PubMed  Google Scholar 

  27. Stanwood GD, Leitch DB, Savchenko V, Wu J, VAF, Anderson DJ, Stankowski JN, Aschner M, Mclaughlin BA (2009) Manganese exposure is cytotoxic and alters dopaminergic and GABAergic neurons within the basal ganglia. J Neurochem 110:378–389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ossola B, Kääriäinen TM, Raasmaja A, Männistö PT (2008) Time-dependent protective and harmful effects of quercetin on 6-OHDA-induced toxicity in neuronal SH-SY5Y cells. Toxicology 250:1–8

    Article  CAS  PubMed  Google Scholar 

  29. Simola N, Morelli M, Carta AR (2007) The 6-Hydroxydopamine model of parkinson’s disease. Neurotox Res 11:151–167

    Article  CAS  PubMed  Google Scholar 

  30. Virgone-Carlotta A, Uhlrich J, Akram MN, Ressnikoff D, Chrétien F, Domenget C, Gherardi R, Despars G, Jurdic P, Honnorat J (2013) Mapping and kinetics of microglia/neuron cell-to-cell contacts in the 6-OHDA murine model of Parkinson’s disease. Glia 61:1645–1658

    Article  PubMed  Google Scholar 

  31. Thiele SL, Warre R, Nash JE (2012) Development of a unilaterally-lesioned 6-OHDA mouse model of Parkinson’s disease. J Vis Exp 60:e3234–e3234

    Google Scholar 

  32. Jing X, Shi H, Zhang C, Ren M, Han M, Wei X, Zhang X, Lou H (2014) Dimethyl fumarate attenuates 6-OHDA-induced neurotoxicity in SH-SY5Y cells and in animal model of Parkinson’s disease by enhancing Nrf2 activity. Neuroscience 286:131–140

    Article  PubMed  Google Scholar 

  33. Li Z, Hu Y, Zhu Q, Zhu J (2008) Neurotrophin-3 reduces apoptosis induced by 6-OHDA in PC12 cells through Akt signaling pathway. Int J Dev Neurosci 26:635–640

    Article  CAS  PubMed  Google Scholar 

  34. Bezard, Zhao (2005) Protective effect of green tea polyphenols on the SH-SY5Y cells against 6-OHDA induced apoptosis through ROS-NO pathway. Free Radic Biol Med 39:682–695

    Article  PubMed  Google Scholar 

  35. Mazumder S, Plesca D, Almasan A (2015) Caspase-3 activation is a critical determinant of genotoxic stress-induced apoptosis. Methods Mol Biol 414:13–21

    Google Scholar 

  36. Porter AG, Jänicke RU (1999) Emerging roles of caspase-3 in apoptosis. Cell Death Differ 6:99–104

    Article  CAS  PubMed  Google Scholar 

  37. Kim M, Cho KH, Shin MS, Lee JM, Cho HS, Kim CJ, Shin DH, Yang HJ (2014) Berberine prevents nigrostriatal dopaminergic neuronal loss and suppresses hippocampal apoptosis in mice with Parkinson’s disease. Int J Mol Med 33:870–878

    CAS  PubMed  Google Scholar 

  38. Hartmann A, Hunot S, Michel PP, Muriel MP, Vyas S, Faucheux BA, Mouatt-Prigent A, Turmel H, Srinivasan A, Ruberg M (2000) Caspase-3: a vulnerability factor and final effector in apoptotic death of dopaminergic neurons in Parkinson’s disease. Proc Natl Acad Sci USA 97:2875–2880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zong WX, Lindsten T, Ross AJ, Macgregor GR, Thompson CB (2001) BH3-only proteins that bind pro-survival Bcl-2 family members fail to induce apoptosis in the absence of Bax and Bak. Genes Dev 15:1481–1486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Xu H, An D, Yin SM, Chen W, Zhao D, Meng X, Yu DQ, Sun YP, Zhao J, Zhang WQ (2015) The alterations of apoptosis factor Bcl-2/Bax in the early Parkinson’s disease rats and the protective effect of scorpion venom derived activity peptide. Chin J Applied Physiol 31:225–229

    CAS  Google Scholar 

  41. Arenas E, Trupp M, Åkerud P, Ibáñez CF (1995) GDNF prevents degeneration and promotes the phenotype of brain noradrenergic neurons in vivo. Neuron 15:1465–1473

    Article  CAS  PubMed  Google Scholar 

  42. Sharma HS (2006) Post-traumatic application of brain-derived neurotrophic factor and glia-derived neurotrophic factor on the rat spinal cord enhances neuroprotection and improves motor function. Acta Neurochir Suppl 96:329–334

    Article  CAS  PubMed  Google Scholar 

  43. Clarkson ED, Zawada WM, Freed CR (1996) GDNF reduces apoptosis in dopaminergic neurons in vitro. Neuroreport 7:145–149

    Article  Google Scholar 

  44. Tsybko AS, Il’Chibaeva TV (2015) The effects of the glial cell line-derived neurotrophic factor (GDNF) on the levels of mRNA of apoptotic genes Bax and Bcl-xl in the brain of mice genetically predisposed to pathological behavior. Russ J Genet 5:407–412

    Article  CAS  Google Scholar 

  45. Barre B, Perkins ND (2010) The Skp2 promoter integrates signaling through the NF-kappaB, p53, and Akt/GSK3beta pathways to regulate autophagy and apoptosis. Mol Cell 38:524–538

    Article  CAS  PubMed  Google Scholar 

  46. Dudek H, Datta SR, Franke TF, Birnbaum MJ, Yao R, Cooper GM, Segal RA, Kaplan DR, Greenberg ME (1997) Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science 275:661–665

    Article  CAS  PubMed  Google Scholar 

  47. Dal-Cim T, Molz S, Egea J, Parada E, Romero A, Budni J, Saavedra MDMD, Barrio LD, Tasca CI, López MG (2012) Guanosine protects human neuroblastoma SH-SY5Y cells against mitochondrial oxidative stress by inducing heme oxigenase-1 via PI3K/Akt/GSK-3β pathway. Neurochem Int 61:397–404

    Article  CAS  PubMed  Google Scholar 

  48. Gong L, Zhang QL, Zhang N, Hua WY, Huang YX, Di PW, Huang T, Xu XS, Liu CF, Hu LF (2012) Neuroprotection by urate on 6-OHDA-lesioned rat model of Parkinson’s disease: linking to Akt/GSK3β signaling pathway. J Neurochem 123:876–885

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by The First Affiliated Hospital of Zhengzhou University and National Natural Science Foundation of China (81501109, U1504813).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junfang Teng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yue, P., Gao, L., Wang, X. et al. Intranasal Administration of GDNF Protects Against Neural Apoptosis in a Rat Model of Parkinson’s Disease Through PI3K/Akt/GSK3β Pathway. Neurochem Res 42, 1366–1374 (2017). https://doi.org/10.1007/s11064-017-2184-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-017-2184-1

Keywords

Navigation