Skip to main content

Advertisement

Log in

Adenosine A1-Receptors Modulate mTOR Signaling to Regulate White Matter Inflammatory Lesions Induced by Chronic Cerebral Hypoperfusion

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

We sought to investigate the role of the adenosine A1 receptors (A1ARs) in white matter lesions under chronic cerebral hypoperfusion (CCH) and explore the potential repair mechanisms by activation of the receptors. A right unilateral common carotid artery occlusion (rUCCAO) method was used to construct a CCH model. 2-chloro-N6-cyclopentyladenosine (CCPA), a specific agonist of A1ARs, was used to explore the biological mechanisms of repair in white matter lesions under CCH. The expression of mammalian target of rapamycin (mTOR), phosphorylation of mTOR (P-mTOR), myelin basic protein (MBP, a marker of white matter myelination) were detected by Western-blot. Pro-inflammatory cytokine tumor necrosis factor-α (TNF-α) and anti-inflammatory cytokine interleukin-10 (IL-10) levels were determined by ELISA. Compared with the control groups on week 2, 4 and 6, in CCPA-treated groups, the ratio of P-mTOR/mTOR, expression of MBP and IL-10 increased markedly, while the expression of TNF-α reduced at week 6. In conclusion, A1ARs appears to reduce inflammation in white matter via the mTOR signaling pathway in the rUCCAO mice. Therefore, A1ARs may serve as a therapeutic target during the repair of white matter lesions under CCH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Garde E, Mortensen EL, Krabbe K, Rostrup E, Larsson HB (2000) Relation between age-related decline in intelligence and cerebral white-matter hyperintensities in healthy octogenarians: a longitudinal study. Lancet 356:628–634

    Article  CAS  PubMed  Google Scholar 

  2. Wang J, Zhang HY, Tang XC (2010) Huperzine a improves chronic inflammation and cognitive decline in rats with cerebral hypoperfusion. J Neurosci Res 88(4):807–815

    CAS  PubMed  Google Scholar 

  3. Thorn JA JS (1996) Adenosine transporters. Gen Pharmacol 27:613–620

    Article  CAS  PubMed  Google Scholar 

  4. Cunha RA (2005) Neuroprotection by adenosine in the brain: from A1 receptor activation to A2A receptor blockade. Purinergic signal 1:111–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Johnston JB, Silva C, Gonzalez G et al (2001) Diminished adenosine A1 receptor expression on macrophages in brain and blood of patients with multiple sclerosis. Ann Neurol 49:650–658

    Article  CAS  PubMed  Google Scholar 

  6. Tsutsui S, Schnermann J, Noorbakhsh F et al (2004) A1 adenosine receptor upregulation and activation attenuates neuroinflammation and demyelination in a model of multiple sclerosis. J Neurosci 24:1521–1529

    Article  CAS  PubMed  Google Scholar 

  7. Cheng P, Ren Y, Bai S et al (2015) Chronic cerebral ischemia induces downregulation of A1 adenosine receptors during white matter damage in adult mice. Cell Mol Neurobiol 35(8):1149–1156

    Article  CAS  PubMed  Google Scholar 

  8. Tyler WA, Gangoli N, Gokina P et al (2009) Activation of the mammalian target of rapamycin (mTOR) is essential for oligodendrocyte differentiation. J Neurosci 29:6367–6378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yoshizaki K, Adachi K, Kataoka S, Watanabe A, Tabira T, Takahashi K, Wakita H (2008) Chronic cerebral hypoperfusion induced by right unilateral common carotid artery occlusion causes delayed white matter lesions and cognitive impairment in adult mice. Exp Neurol 210(2):585–591

  10. Zhao T, Xi L, Chelliah J, Levasseur JE, Kukreja RC (2000) Inducible nitric oxide synthase mediates delayedmyocardial protection induced by activation of adenosine A1 receptors evidence from gene-knockout mice. Circulation 102:902–907

    Article  CAS  PubMed  Google Scholar 

  11. Chong ZZ, Shang YC, Zhang L, Wang S, Maiese K (2010) Mammalian target of rapamycin: hitting the bull’s-eye for neurological disorders. Oxid Med Cell Longev 3:374–391

    Article  PubMed  PubMed Central  Google Scholar 

  12. Floyd S, Favre C, Lasorsa FM et al (2007) The insulin-like growth factor-I–mTOR signaling pathway induces the mitochondrial pyrimidine nucleotide carrier to promote cell growth. Mol Biol Cell 18:3545–3555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Good DW, George T, Watts BA (2008) Nerve growth factor inhibits Na+/H+ exchange and absorption through parallel phosphatidylinositol 3-kinase-mTOR and ERK pathways in thick ascending limb. J Biol Chem 283:26602–26611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Han S, Witt RM, Santos TM et al (2008) Pam (protein associated with Myc) functions as an E3 ubiquitin ligase and regulates TSC/mTOR signaling. Cell Signal 20:1084–1091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Recchia AG, Musti AM, Lanzino M et al (2009) A cross-talk between the androgen receptor and the epidermal growth factor receptor leads to p38MAPK-dependent activation of mTOR and cyclinD1 expression in prostate and lung cancer cells. Int J Biochem Cell Biol 41:603–614

    Article  CAS  PubMed  Google Scholar 

  16. Choi KC, Kim SH, Ha JY, Kim ST, Son JH (2010) A novel mTOR activating protein protects dopamine neurons against oxidative stress by repressing autophagy related cell death. J Neurochem 112:366–376

    Article  CAS  PubMed  Google Scholar 

  17. Shang YC, Chong ZZ, Wang S, Maiese K (2012) Prevention of β-amyloid degeneration of microglia by erythropoietin depends on Wnt1, the PI 3-K/mTOR pathway, Bad, and Bcl-xL. Aging 4:187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chano T, Okabe H, Hulette CM (2007) RB1CC1 insufficiency causes neuronal atrophy through mTOR signaling alteration and involved in the pathology of Alzheimer’s diseases. Brain Res 1168:97–105

    Article  CAS  PubMed  Google Scholar 

  19. Dwyer JM, Lepack AE, Duman RS (2012) mTOR activation is required for the antidepressant effects of mGluR2/3 blockade. Int J Neuropsychopharmacol 15:429–434

    Article  CAS  PubMed  Google Scholar 

  20. Li N, Liu RJ, Dwyer JM et al (2011) Glutamate N-methyl-D-aspartate receptor antagonists rapidly reverse behavioral and synaptic deficits caused by chronic stress exposure. Biol Psychiatry 69:754–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hoeffer CA, Klann E (2010) mTOR signaling: at the crossroads of plasticity, memory and disease. Trends Neurosci 33:67–75

    Article  CAS  PubMed  Google Scholar 

  22. Jaworski J, Sheng M (2006) The growing role of mTOR in neuronal development and plasticity. Mol Neurobiol 34:205–219

    Article  CAS  PubMed  Google Scholar 

  23. Puighermanal E, Marsicano G, Busquets-Garcia A et al (2009) Cannabinoid modulation of hippocampal long-term memory is mediated by mTOR signaling. Nat Neurosci 12:1152–1158

    Article  CAS  PubMed  Google Scholar 

  24. Swiech, L., Perycz, M., Malik, A. & Jaworski, J (2008) Role of mTOR in physiology and pathology of the nervous system. Biochim Biophys Acta (BBA) Proteins Proteomics 1784:116–132

  25. Blundell J, Kouser M, Powell CM (2008) Systemic inhibition of mammalian target of rapamycin inhibits fear memory reconsolidation. Neurobiol Learn Mem 90:28–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Huang Z, Liu J, Cheung P-Y, Chen C (2009) Long-term cognitive impairment and myelination deficiency in a rat model of perinatal hypoxic-ischemic brain injury. Brain Res 1301:100–109

    Article  CAS  PubMed  Google Scholar 

  27. Wang DS, Bennett DA, Mufson EJ et al (2004) Contribution of changes in ubiquitin and myelin basic protein to age-related cognitive decline. Neurosci Res 48:93–100

    Article  CAS  PubMed  Google Scholar 

  28. Yang J, Jiang Z, Fitzgerald DC et al (2009) Adult neural stem cells expressing IL-10 confer potent immunomodulation and remyelination in experimental autoimmune encephalitis. J Clin Invest 119:3678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rodts-Palenik S, Wyatt-Ashmead J, Pang Y et al (2004) Maternal infection-induced white matter injury is reduced by treatment with interleukin-10. Am J Obstet Gynecol 191:1387–1392

    Article  CAS  PubMed  Google Scholar 

  30. Boyd ZS, Kriatchko A, Yang J et al (2003) Interleukin-10 receptor signaling through STAT-3 regulates the apoptosis of retinal ganglion cells in response to stress. Invest Ophthalmol Vis Sci 44:5206–5211

    Article  PubMed  Google Scholar 

  31. Molina-Holgado F, Grencis R, Rothwell NJ (2001) Actions of exogenous and endogenous IL-10 on glial responses to bacterial LPS/cytokines. Glia 33:97–106

    Article  CAS  PubMed  Google Scholar 

  32. Strle K, Zhou JH, Shen WH et al (2001) lnterleukin-10 in the brain. Crit Rev Immunol 21(5):427–449

  33. Hasko G, Szabó C, Németh ZH et al (1996) Adenosine receptor agonists differentially regulate IL-10, TNF-alpha, and nitric oxide production in RAW 264.7 macrophages and in endotoxemic mice. J Immunol 157:4634–4640

    CAS  PubMed  Google Scholar 

  34. Weichhart T, Costantino G, Poglitsch M et al (2008) The TSC-mTOR signaling pathway regulates the innate inflammatory response. Immunity 29:565–577

    Article  CAS  PubMed  Google Scholar 

  35. Rodriguez-Yanez M, Castillo J (2008) Role of inflammatory markers in brain ischemia. Curr Opin Neurol 21:353–357. doi:10.1097/WCO.0b013e3282ffafbf

Download references

Acknowledgments

This work was supported by research Grants from the National Natural Science Foundation of China (Grant # 81171113, Grant # 81571129). We thank the laboratory support staff for their help in this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wen Huang or Peng Xie.

Additional information

Pengfei Cheng and Xuzheng Zuo have contributed equally to the work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, P., Zuo, X., Ren, Y. et al. Adenosine A1-Receptors Modulate mTOR Signaling to Regulate White Matter Inflammatory Lesions Induced by Chronic Cerebral Hypoperfusion. Neurochem Res 41, 3272–3277 (2016). https://doi.org/10.1007/s11064-016-2056-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-016-2056-0

Keywords

Navigation