Skip to main content

Advertisement

Log in

Naringin and Sertraline Ameliorate Doxorubicin-Induced Behavioral Deficits Through Modulation of Serotonin Level and Mitochondrial Complexes Protection Pathway in Rat Hippocampus

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The present study was designed to investigate the neuroprotective effect of naringin (NR) alone as well as its combination with sertraline (SRT) against doxorubicin (DOX)-induced neurobehavioral and neurochemical anomalies. DOX (15 mg/kg; i.p.) administration caused behavioral alterations, oxidative stress, neuroinflammation, mitochondrial dysfunction and monoamines alteration in male Wistar rats. NR (50 and 100 mg/kg; i.p.) and SRT (5 mg/kg; i.p.) treatment significantly attenuated DOX-induced anxiety and depressive-like behavior as evident from elevated plus maze (EPM) and modified forced swimming test (mFST), respectively. NR treatment significantly attenuated DOX-induced raised plasma corticosterone (CORT), tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β) levels in the hippocampus (HC). Furthermore, we found that combination of NR and SRT regimen ameliorated DOX-induced behavioral anomalies through modulation of the 5-HT level and mitochondrial complexes protection pathway along with alleviation of oxidative stress in the HC region. Therefore, NR treatment alone or in combination with SRT could be beneficial against DOX-induced neurotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

DOX:

Doxorubicin

NR:

Naringin

Sod.CMC:

Sodium carboxymethyl cellulose

SRT:

Sertraline

BBB:

Blood-brain barrier

P-gp:

P-glycoprotein

HC:

Hippocampus

EPM:

Elevated plus maze

mFST:

Modified forced swimming test

TNF-α:

Tumor necrosis factor-alpha

IL-1β:

Interleukin-1 beta

CORT:

Corticosterone

MDA:

Malondialdehyde

GSH:

Glutathione

SOD:

Superoxide dismutase

CAT:

Catalase

SDH:

Succinate dehydrogenase

5-HT:

Serotonin

NE:

Norepinephrine

DA:

Dopamine

References

  1. Quiles JL, Huertas JR, Battino M et al (2002) Antioxidant nutrients and adriamycin toxicity. Toxicology 180:79–95. doi:10.1016/S0300-483X(02)00383-9

    Article  CAS  PubMed  Google Scholar 

  2. Carvalho C, Santos RX, Cardoso S et al (2009) Doxorubicin: the good, the bad and the ugly effect. Curr Med Chem 16:3267–3285. doi:10.2174/092986709788803312

    Article  CAS  PubMed  Google Scholar 

  3. Cutts SM, Swift LP, Rephaeli A et al (2003) Sequence specificity of adriamycin-DNA adducts in human tumor cells. Mol Cancer Ther 2:661–670

    CAS  PubMed  Google Scholar 

  4. Gutierrez PL (2000) The role of NAD(P)H oxidoreductase (DT-diaphorase) in the bioactivation of quinone-containing antitumor agents: a review. Free Radic Biol Med 29:263–275. doi:10.1016/S0891-5849(00)00314-2

    Article  CAS  PubMed  Google Scholar 

  5. Kwatra M, Kumar V, Jangra A et al (2016) Ameliorative effect of naringin against doxorubicin-induced acute cardiac toxicity in rats. Pharm Biol 54:637–647. doi:10.3109/13880209.2015.1070879

    Article  CAS  PubMed  Google Scholar 

  6. Jansen CE, Dodd MJ, Miaskowski CA et al (2008) Preliminary results of a longitudinal study of changes in cognitive function in breast cancer patients undergoing chemotherapy with doxorubicin and cyclophosphamide. Psychooncology 17:1189–1195. doi:10.1002/pon.1342

    Article  PubMed  Google Scholar 

  7. Ferrell BR, Hassey Dow K (1997) Quality of life among long-term cancer survivors. Oncology 11:565–568

    CAS  PubMed  Google Scholar 

  8. Ahles TA, Saykin AJ (2007) Candidate mechanisms for chemotherapy-induced cognitive changes. Nat Rev Cancer 7:192–201. doi:10.1038/nrc2073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Liedke PE, Reolon GK, Kilpp B et al (2009) Systemic administration of doxorubicin impairs aversively motivated memory in rats. Pharmacol Biochem Behav 94:239–243. doi:10.1016/j.pbb.2009.09.001

    Article  CAS  PubMed  Google Scholar 

  10. Merzoug S, Toumi ML, Boukhris N et al (2011) Adriamycin-related anxiety-like behavior, brain oxidative stress and myelotoxicity in male Wistar rats. Pharmacol Biochem Behav 99:639–647. doi:10.1016/j.pbb.2011.06.015

    Article  CAS  PubMed  Google Scholar 

  11. Merzoug S, Toumi ML, Tahraoui A (2014) Quercetin mitigates adriamycin-induced anxiety-and depression-like behaviors, immune dysfunction, and brain oxidative stress in rats. Naunyn Schmiedebergs Arch Pharmacol 387:921–933. doi:10.1007/s00210-014-1008-y

    Article  CAS  PubMed  Google Scholar 

  12. Van VM, Kal HB, Taphoorn MJ et al (2002) Changes in blood-brain barrier permeability induced by radiotherapy: implications for timing of chemotherapy? (Review). Oncol Rep 9:683–688. doi:10.3892/or.9.4.683

    Google Scholar 

  13. Wefel JS, Witgert ME, Meyers CA (2008) Neuropsychological sequelae of non-central nervous system cancer and cancer therapy. Neuropsychol Rev 18:121–131. doi:10.1007/s11065-008-9058-x

    Article  PubMed  Google Scholar 

  14. Bigotte L, Olsson Y (1983) Toxic effects of adriamycin on the central nervous system. Ultrastructural changes in some circumventricular organs of the mouse after intravenous administration of the drug. Acta Neuropathol 61:291–299

    Article  CAS  PubMed  Google Scholar 

  15. Ohnishi T, Tamai I, Sakanaka K et al (1995) In vivo and in vitro evidence for ATP-dependency of P-glycoprotein-mediated efflux of doxorubicin at the blood–brain-barrier. Biochem Pharmacol 49:1541–1544. doi:10.1016/0006-2952(95)00082-B

    Article  CAS  PubMed  Google Scholar 

  16. Chen Y, Jungsuwadee P, Vore M et al (2007) Collateral damage in cancer chemotherapy: oxidative stress in nontargeted tissues. Mol Interv 7:147–156

    Article  CAS  PubMed  Google Scholar 

  17. Tangpong J, Cole MP, Sultana R et al (2006) Adriamycin-induced, TNF-alpha-mediated central nervous system toxicity. Neurobiol Dis 23:127–139. doi:10.1016/j.nbd.2006.02.013

    Article  CAS  PubMed  Google Scholar 

  18. Aluise CD, Miriyala S, Noel T et al (2011) 2-Mercaptoethane sulfonate prevents doxorubicin-induced plasma protein oxidation and TNF-α release: implications for the reactive oxygen species-mediated mechanisms of chemobrain. Free Radic Biol Med 50:1630–1638. doi:10.1016/j.freeradbiomed.2011.03.009

    Article  CAS  PubMed  Google Scholar 

  19. Joshi G, Sultana R, Cole Tangpong J et al (2005) Free radical mediated oxidative stress and toxic side effects in brain induced by the anti cancer drug adriamycin: insight into chemobrain. Free Radic Res 39:1147–1154. doi:10.1080/10715760500143478

    Article  CAS  PubMed  Google Scholar 

  20. Tangpong J, Cole MP, Sultana R et al (2007) Adriamycin-mediated nitration of manganese superoxide dismutase in the central nervous system: insight into the mechanism of chemobrain. J Neurochem 100:191–201. doi:10.1111/j.1471-4159.2006.04179.x

    Article  CAS  PubMed  Google Scholar 

  21. Tangpong J, Sompol P, Vore M et al (2008) Tumor necrosis factor alpha-mediated nitric oxide production enhances manganese superoxide dismutase nitration and mitochondrial dysfunction in primary neurons: an insight into the role of glial cells. Neuroscience 151:622–629. doi:10.1016/j.neuroscience.2007.10.046

    Article  CAS  PubMed  Google Scholar 

  22. Mohamed RH, Karam RA, Amer MG (2011) Epicatechin attenuates doxorubicin-induced brain toxicity: critical role of TNF-α, iNOS and NF-κB. Brain Res Bull 86:22–28. doi:10.1016/j.brainresbull.2011.07.001

    Article  CAS  PubMed  Google Scholar 

  23. Jangra A, Sriram CS, Dwivedi S et al (2016) Sodium phenylbutyrate and edaravone abrogate chronic restraint stress-induced behavioral deficits: implication of oxido-nitrosative, endoplasmic reticulum stress cascade, and neuroinflammation. Cell Mol Neurobiol. doi:10.1007/s10571-016-0344-5

    PubMed  Google Scholar 

  24. Jangra A, Dwivedi S, Sriram CS et al (2015) Honokiol abrogates chronic restraint stress-induced cognitive impairment and depressive-like behaviour by blocking endoplasmic reticulum stress in the hippocampus of mice. Eur J Pharmacol 770:25–32. doi:10.1016/j.ejphar.2015.11.047

    Article  PubMed  Google Scholar 

  25. Kitamura Y, Hattori S, Yoneda S et al (2015) Doxorubicin and cyclophosphamide treatment produces anxiety-like behavior and spatial cognition impairment in rats: possible involvement of hippocampal neurogenesis via brain-derived neurotrophic factor and cyclin D1 regulation. Behav Brain Res 292:184–193. doi:10.1016/j.bbr.2015.06.007

    Article  CAS  PubMed  Google Scholar 

  26. Kesler S, Janelsins M, Koovakkattu D et al (2013) Reduced hippocampal volume and verbal memory performance associated with interleukin-6 and tumor necrosis factor-alpha levels in chemotherapy-treated breast cancer survivors. Brain Behav Immun 30:S109–S116. doi:10.1016/j.bbi.2012.05.017

    Article  CAS  PubMed  Google Scholar 

  27. Doll DN, Rellick SL, Barr TL et al (2015) Rapid mitochondrial dysfunction mediates TNF-alpha-induced neurotoxicity. J Neurochem 132:443–451. doi:10.1111/jnc.13008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cardoso S, Santos RX, Carvalho C et al (2008) Doxorubicin increases the susceptibility of brain mitochondria to Ca2+ induced permeability transition and oxidative damage. Free Radic Biol Med 45:1395–1402. doi:10.1016/j.freeradbiomed.2008.08.008

    Article  CAS  PubMed  Google Scholar 

  29. O’Connor CM, Jiang W, Kuchibhatla M, SADHART-CHF Investigators et al (2010) Safety and efficacy of sertraline for depression in patients with heart failure: results of the SADHART-CHF (Sertraline Against Depression and Heart Disease in Chronic Heart Failure) trial. J Am Coll Cardiol 56:692–699. doi:10.1016/j.jacc.2010.03.068

    Article  PubMed  PubMed Central  Google Scholar 

  30. Spencer JP (2008) Flavonoids: modulators of brain function? Br J Nutr 99:ES60–ES77. doi:10.1017/S0007114508965776

    PubMed  Google Scholar 

  31. Jagetia GC, Reddy TK (2002) The grapefruit flavonone naringin, protects against the radiation-induced genomic instability in the mice bone marrow: a micronucleus study. Mutat Res 519:37–48. doi:10.1016/S1383-5718(02)00111-0

    Article  CAS  PubMed  Google Scholar 

  32. Gaur V, Aggarwal A, Kumar A (2009) Protective effect of naringin against ischemic reperfusion cerebral injury: possible neurobehavioral, biochemical and cellular alterations in rat brain. Eur J Pharmacol 616:147–154. doi:10.1016/j.ejphar.2009.06.056

    Article  CAS  PubMed  Google Scholar 

  33. Kumar P, Kumar A (2010) Protective effect of hesperidin and naringin against 3-nitropropionic acid induced Huntington’s like symptoms in rats: possible role of nitric oxide. Behav Brain Res 206:38–46. doi:10.1016/j.bbr.2009.08.028

    Article  CAS  PubMed  Google Scholar 

  34. Aggarwal A, Gaur V, Kumar A (2010) Nitric oxide mechanism in the protective effect of naringin against post-stroke depression (PSD) in mice. Life Sci 86:928–935. doi:10.1016/j.lfs.2010.04.011

    Article  CAS  PubMed  Google Scholar 

  35. Maratha SR, Mahadevan N (2012) Memory enhancing activity of naringin in unstressed and stressed mice: possible cholinergic and nitriergic modulation. Neurochem Res 37:2206–2212. doi:10.1007/s11064-012-0844-8

    Article  CAS  PubMed  Google Scholar 

  36. Fernandez SP, Nguyen M, Yow TT (2009) The flavonoid glycosides, myricitrin, gossypin and naringin exert anxiolytic action in mice. Neurochem Res 34:1867–1875. doi:10.1007/s11064-009-9969-9

    Article  CAS  PubMed  Google Scholar 

  37. Harkin A, Kelly JP, McNamara M et al (1999) Activity and onset of action of reboxetine and effect of combination with sertraline in an animal model of depression. Eur J Pharmacol 364:123–132. doi:10.1016/S0014-2999(98)00838-3

    Article  CAS  PubMed  Google Scholar 

  38. Pellow S, Chopin P, File SE et al (1985) Validation of open: closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Methods 14:149–167. doi:10.1016/0165-0270(85)90031-7

    Article  CAS  PubMed  Google Scholar 

  39. Henry CJ, Huang Y, Wynne A et al (2008) Minocycline attenuates lipopolysaccharide (LPS)-induced neuroinflammation, sickness behavior, and anhedonia. J Neuroinflamm. doi:10.1186/1742-2094-5-15

    Google Scholar 

  40. Dubey VK, Ansari F, Vohora D (2015) Possible involvement of corticosterone and serotonin in antidepressant and antianxiety effects of chromium picolinate in chronic unpredictable mild stress induced depression and anxiety in rats. J Trace Elem Med Biol 29:222–226. doi:10.1016/j.jtemb.2014.06.014

    Article  CAS  PubMed  Google Scholar 

  41. Ghule AE, Kulkarni CP, Bodhankar SL et al (2009) Effect of pretreatment with coenzyme Q10 on isoproterenol-induced cardiotoxicity and cardiac hypertrophy in rats. Curr Ther Res Clin Exp 70:460–471. doi:10.1016/j.curtheres.2009.12.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Slater TF, Sawyer BC (1997) The stimulatory effects of carbon tetrachloride and other halogenoalkanes on peroxidative reactions in rat liver fractions in vitro. General features of the systems used. Biochem J 123:805–814. doi:10.1042/bj1230805

    Article  Google Scholar 

  43. Moron MS, Depierre JW, Mannervik B (1979) Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochim Biophys Acta 582:67–78. doi:10.1016/0304-4165(79)90289-7

    Article  CAS  PubMed  Google Scholar 

  44. Misra HP, Fridovich I (1972) The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247:3170–3175

    CAS  PubMed  Google Scholar 

  45. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  46. Rosenthal RE, Hamud F, Fiskum G et al (1987) Cerebral ischemia and reperfusion: prevention of brain mitochondrial injury by lidoflazine. J Cereb Blood Flow Metab 7:752–758. doi:10.1038/jcbfm.1987.130

    Article  CAS  PubMed  Google Scholar 

  47. King TE, Howard RL (1967) Preparations and properties of soluble NADH dehydrogenases from cardiac muscle. Methods Enzymol 10:275–294. doi:10.1016/0076-6879(67)10055-4

    Article  CAS  Google Scholar 

  48. King TE (1967) Preparation of succinate dehydrogenase and reconstitution of succinate oxidase. Methods Enzymol 10:322–331. doi:10.1016/0076-6879(67)10061-X

    Article  CAS  Google Scholar 

  49. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63. doi:10.1016/0022-1759(83)90303-4

    Article  CAS  PubMed  Google Scholar 

  50. Liu Y, Peterson DA, Kimura H et al (1997) Mechanism of cellular 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction. J Neurochem 69:581–593. doi:10.1046/j.1471-4159.1997.69020581.x

    Article  CAS  PubMed  Google Scholar 

  51. Sottocasa GL, Kuylenstierna B, Ernster L et al (1967) An electron-transport system associated with the outer membrane of liver mitochondria. A biochemical and morphological study. J Cell Biol 32:415–438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Fleming RM, Clark WG, Fenster ED et al (1965) Single extraction method for the simultaneous flurometric determination of serotonin, dopamine, and norepinephrine in brain. Anal Chem 37:692–696

    Article  CAS  PubMed  Google Scholar 

  53. Green AR, Curzon G (1968) Decrease of 5-hydroxytryptamine in the brain provoked by hydrocortisone and its prevention by allopurinol. Nature 220:1095–1097

    Article  CAS  PubMed  Google Scholar 

  54. Sulakhiya K, Kumar P, Jangra A et al (2014) Honokiol abrogates lipopolysaccharide-induced depressive like behavior by impeding neuroinflammation and oxido-nitrosative stress in mice. Eur J Pharmacol 744:124–131. doi:10.1016/j.ejphar.2014.09.049

    Article  CAS  PubMed  Google Scholar 

  55. Fernández SP, Wasowski C, Loscalzo LM et al (2006) Central nervous system depressant action of flavonoid glycosides. Eur J Pharmacol 539:168–176. doi:10.1016/j.ejphar.2006.04.004

    Article  PubMed  Google Scholar 

  56. Peng HW, Cheng FC, Huang YT et al (1998) Determination of naringenin and its glucuronide conjugate in rat plasma and brain tissue by high-performance liquid chromatography. J Chromatogr B Biomed Sci Appl 714:369–374. doi:10.1016/S0378-4347(98)00204-7

    Article  CAS  PubMed  Google Scholar 

  57. Bannerman DM, Sprengel R, Sanderson DJ et al (2014) Hippocampal synaptic plasticity, spatial memory and anxiety. Nat Rev Neurosci 15:181–192. doi:10.1038/nrn3677

    Article  CAS  PubMed  Google Scholar 

  58. Allgulander C, Dahl AA, Austin C et al (2004) Efficacy of sertraline in a 12-week trial for generalized anxiety disorder. Am J Psychiatry 161:1642–1649

    Article  PubMed  Google Scholar 

  59. Berton O, Aguerre S, Sarrieau A et al (1998) Differential effects of social stress on central serotonergic activity and emotional reactivity in Lewis and spontaneously hypertensive rats. Neuroscience 82:147–159. doi:10.1016/S0306-4522(97)00282-0

    Article  CAS  PubMed  Google Scholar 

  60. Chung KK, Martinez M, Herbert J (1999) Central serotonin depletion modulates the behavioral, endocrine and physiological responses to repeated social stress and subsequent c-fos expression in the brains of male rats. Neuroscience 92:613–625. doi:10.1016/S0306-4522(99)00028-7

    Article  CAS  PubMed  Google Scholar 

  61. Liu RY, Zhang Y, Coughlin BL et al (2014) Doxorubicin attenuates serotonin-induced long-term synaptic facilitation by phosphorylation of p38 mitogen-activated protein kinase. J Neurosci 34:13289–13300. doi:10.1523/JNEUROSCI.0538-14.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mahar I, Bambico FR, Mechawar N et al (2014) Stress, serotonin, and hippocampal neurogenesis in relation to depression and antidepressant effects. Neurosci Biobehav Rev 38:173–192. doi:10.1016/j.neubiorev.2013.11.009

    Article  CAS  PubMed  Google Scholar 

  63. Ahmad A, Rasheed N, Ashraf GM et al (2012) Brain region specific monoamine and oxidative changes during restraint stress. Can J Neurol Sci 39:311–318

    Article  PubMed  Google Scholar 

  64. Karten YJ, Nair SM, van Essen L et al (1999) Long-term exposure to high corticosterone levels attenuates serotonin responses in rat hippocampal CA1 neurons. Proc Natl Acad Sci USA 96:13456–13461. doi:10.1073/pnas.96.23.13456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhang HY, Zhao YN, Wang ZL, Huang YF (2015) Chronic corticosterone exposure reduces hippocampal glycogen level and induces depression-like behavior in mice. J Zhejiang Univ Sci B 16:62–69. doi:10.1631/jzus.B1400166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. You JM, Yun SJ, Nam KN et al (2009) Mechanism of glucocorticoid-induced oxidative stress in rat hippocampal slice cultures. Can J Physiol Pharmacol 87:440–447. doi:10.1139/y09-027

    Article  CAS  PubMed  Google Scholar 

  67. Marzatico F, Bertorelli L, Panarasa O et al (1998) Brain oxidative damage following acute immobilization and mild emotional stress. Int J Stress Manag 5:223–236. doi:10.1023/A:1022969828885

    Article  Google Scholar 

  68. Cruz-Aguado R, Almaguer-Melian W, Díaz CM et al (2001) Behavioral and biochemical effects of glutathione depletion in the rat brain. Brain Res Bull 55:327–333. doi:10.1016/S0361-9230(01)00484-1

    Article  CAS  PubMed  Google Scholar 

  69. Bains JS, Shaw CA (1997) Neurodegenerative disorders in humans: the role of glutathione in oxidative stress-mediated neuronal death. Brain Res Rev 25:335–358. doi:10.1016/S0165-0173(97)00045-3

    Article  CAS  PubMed  Google Scholar 

  70. Leonard B, Maes M (2012) Mechanistic explanation how cell-mediated immune activation, inflammation and oxidative and nitrosative stress pathways and their sequels and concomitants play a role in the pathophysiology of unipolar depression. Neurosci Biobehav Rev 36:764–785. doi:10.1016/j.neubiorev.2011.12.005

    Article  CAS  PubMed  Google Scholar 

  71. Jangra A, Lukhi MM, Sulakhiya K et al (2014) Protective effect of mangiferin against lipopolysaccharide-induced depressive and anxiety-like behavior in mice. Eur J Pharmacol 740:337–345. doi:10.1016/j.ejphar.2014.07.031

    Article  CAS  PubMed  Google Scholar 

  72. Ahmad A, Rasheed N, Banu N et al (2010) Alterations in monoamine levels and oxidative systems in frontal cortex, striatum, and hippocampus of the rat brain during chronic unpredictable stress. Stress 13:355–364. doi:10.3109/10253891003667862

    Article  PubMed  Google Scholar 

  73. Kanno S, Shouji A, Asou K et al (2003) Effects of Naringin on hydrogen peroxide-induced cytotoxicity and apoptosis in P388 cells. J Pharmacol Sci 92:166–170. doi:10.1254/jphs.92.166

    Article  CAS  PubMed  Google Scholar 

  74. Jeon SM, Bok SH, Jang MK et al (2001) Antioxidative activity of naringin and lovastatin in high cholesterol-fed rabbits. Life Sci 69:2855–2866

    Article  CAS  PubMed  Google Scholar 

  75. Jangra A, Kasbe P, Pandey SN et al (2015) Hesperidin and silibinin ameliorate aluminum-induced neurotoxicity: modulation of antioxidants and inflammatory cytokines level in mice hippocampus. Biol Trace Elem Res 168:462–471. doi:10.1007/s12011-015-0375-7

    Article  CAS  PubMed  Google Scholar 

  76. Orth N, Schapira AH (2001) Mitochondria and degenerative disorders. Am J Med Genet 106:27–36

    Article  CAS  PubMed  Google Scholar 

  77. Goossens V, Grooten J, De Vos K et al (1995) Direct evidence for tumor necrosis factor-induced mitochondrial reactive oxygen intermediates and their involvement in cytotoxicity. Proc Natl Acad Sci USA 92:8115–8119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Fromm MF (2000) P-glycoprotein: a defense mechanism limiting oral bioavailability and CNS accumulation of drugs. Int J Clin Pharmacol Ther 38:69–74

    Article  CAS  PubMed  Google Scholar 

  79. Lesniak MS, Upadhyay U, Goodwin R et al (2005) Local delivery of doxorubicin for the treatment of malignant brain tumors in rats. Anticancer Res 25:3825–3831

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Koukourakis MI, Koukouraki S, Fezoulidis I et al (2000) High intratumoural accumulation of stealth® liposomal doxorubicin (Caelyx®) in glioblastomas and in metastatic brain tumours. Br J Cancer 83:1281–1286. doi:10.1054/bjoc.2000.1459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kreuter J, Gelperina S (2008) Use of nanoparticles for cerebral cancer. Tumori 94:271–277

    CAS  PubMed  Google Scholar 

  82. Petri B, Bootz A, Khalansky A et al (2007) Chemotherapy of brain tumour using doxorubicin bound to surfactant-coated poly(butyl cyanoacrylate) nanoparticles: revisiting the role of surfactants. J Control Release 117:51–58. doi:10.1016/j.jconrel.2006.10.015

    Article  CAS  PubMed  Google Scholar 

  83. Zhao BX, Sun YB, Wang SQ et al (2013) Grape seed procyanidin reversal of p-glycoprotein associated multi-drug resistance via down-regulation of NF-κB and MAPK/ERK mediated YB-1 activity in A2780/T cells. PLoS ONE 8:e71071. doi:10.1371/journal.pone.0071071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. He L, Zhao C, Yan M et al (2009) Inhibition of P-glycoprotein function by procyanidine on blood-brain barrier. Phytother Res 23:933–937. doi:10.1002/ptr.2781

    Article  CAS  PubMed  Google Scholar 

  85. Park HS, Oh JH, Lee Jh et al (2011) Minor effects of the citrus flavonoids naringin, naringenin and quercetin, on the pharmacokinetics of doxorubicin in rats. Pharmazie 66:424–429

    CAS  PubMed  Google Scholar 

  86. Tsai TH, Lee CH, Yeh PH (2001) Effect of P-glycoprotein modulators on the pharmacokinetics of camptothecin using microdialysis. Br J Pharmacol 134:1245–1252. doi:10.1038/sj.bjp.0704363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kapoor A, Iqbal M, Petropoulos S et al (2013) Effects of sertraline and fluoxetine on p-glycoprotein at barrier sites: in vivo and in vitro approaches. PLoS ONE 8:e56525. doi:10.1371/journal.pone.0056525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ueda N, Yoshimura R, Umene-Nakano W et al (2009) Grapefruit juice alters plasma sertraline levels after single ingestion of sertraline in healthy volunteers. World J Biol Psychiatry 10:832–835. doi:10.1080/15622970802688069

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank All India Council for Technical Education, India for fellowship to Mohit Kwatra for this work. The authors are greatly thankful to University Grants Commission Special Assistance Programme (UGC-SAP), Department of Pharmacology at Poona College of Pharmacy, Pune for technical support. The authors are immensely thankful to Dr. Paritosh Parashar for proof reading this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohit Kwatra.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwatra, M., Jangra, A., Mishra, M. et al. Naringin and Sertraline Ameliorate Doxorubicin-Induced Behavioral Deficits Through Modulation of Serotonin Level and Mitochondrial Complexes Protection Pathway in Rat Hippocampus. Neurochem Res 41, 2352–2366 (2016). https://doi.org/10.1007/s11064-016-1949-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-016-1949-2

Keywords

Navigation