Skip to main content

Advertisement

Log in

The Role of Homer1b/c in Neuronal Apoptosis Following LPS-Induced Neuroinflammation

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Homer, also designated Vesl, is one member of the newly found postsynaptic density scaffold proteins, playing a vital role in maintaining synaptic integrity, regulating intracellular calcium mobilization, and being critical for the regulation of cellular apoptosis. However, its function in the inflamed central nervous system (CNS) is not fully elucidated. Here, we investigated the role of Homer1b/c, a long form of Homer1, in lipopolysaccharide (LPS) induced neuroinflammation in CNS. Western blot analysis indicated that LPS administration significantly increased the expression of Homer1b/c in rat brain. Moreover, double immunofluorescent staining suggested Homer1b/c was mainly distributed in the cytoplasm of neurons and had a close association with cleaved caspase-3 level in neurons in rat brain after LPS injection. In vitro studies indicated that up-regulation of Homer1b/c might be related to the subsequent apoptosis in neurons treated by conditioned media (CM), collected from LPS-stimulated mixed glial cultures (MGC). We also found down-regulation of Homer1b/c partly blocked the increase of cleaved caspase-3 and the proportion of Bax/Bcl-2 in neurons induced by MGC-CM. Taken together, these findings suggested that Homer1b/c might promote neuronal apoptosis via the Bax/Bcl-2 dependent pathway during neuroinflammation in CNS, and inhibiting Homer1b/c expression might provide a novel neuroprotective strategy against the inflammation-related neuronal apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Choo XY, Alukaidey L, White AR, Grubman A (2013) Neuroinflammation and copper in Alzheimer’s disease. Int J Alzheimers Dis 2013:145345

    PubMed Central  PubMed  Google Scholar 

  2. Zinger A, Barcia C, Herrero MT, Guillemin GJ (2011) The involvement of neuroinflammation and kynurenine pathway in Parkinson’s disease. Parkinsons Dis 2011:716859

    PubMed Central  PubMed  Google Scholar 

  3. De Santi L, Polimeni G, Cuzzocrea S, Esposito E, Sessa E, Annunziata P, Bramanti P (2011) Neuroinflammation and neuroprotection: an update on (future) neurotrophin-related strategies in multiple sclerosis treatment. Curr Med Chem 18:1775–1784

    Article  PubMed  Google Scholar 

  4. Finnie JW (2013) Neuroinflammation: beneficial and detrimental effects after traumatic brain injury. Inflammopharmacology 21:309–320

    Article  CAS  PubMed  Google Scholar 

  5. Alexander JK, Popovich PG (2009) Neuroinflammation in spinal cord injury: therapeutic targets for neuroprotection and regeneration. Prog Brain Res 175:125–137

    Article  CAS  PubMed  Google Scholar 

  6. Zou J, Vetreno RP, Crews FT (2012) ATP-P2X7 receptor signaling controls basal and TNFalpha-stimulated glial cell proliferation. Glia 60:661–673

    Article  PubMed Central  PubMed  Google Scholar 

  7. Bian Q, Kato T, Monji A, Hashioka S, Mizoguchi Y, Horikawa H, Kanba S (2008) The effect of atypical antipsychotics, perospirone, ziprasidone and quetiapine on microglial activation induced by interferon-gamma. Prog Neuropsychopharmacol Biol Psychiatry 32:42–48

    Article  CAS  PubMed  Google Scholar 

  8. Gavilan MP, Revilla E, Pintado C, Castano A, Vizuete ML, Moreno-Gonzalez I, Baglietto-Vargas D, Sanchez-Varo R, Vitorica J, Gutierrez A, Ruano D (2007) Molecular and cellular characterization of the age-related neuroinflammatory processes occurring in normal rat hippocampus: potential relation with the loss of somatostatin GABAergic neurons. J Neurochem 103:984–996

    Article  CAS  PubMed  Google Scholar 

  9. Amiraslani B, Sabouni F, Abbasi S, Nazem H, Sabet M (2012) Recognition of betaine as an inhibitor of lipopolysaccharide-induced nitric oxide production in activated microglial cells. Iran Biomed J 16:84–89

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Ubogu EE, Cossoy MB, Ransohoff RM (2006) The expression and function of chemokines involved in CNS inflammation. Trends Pharmacol Sci 27:48–55

    Article  CAS  PubMed  Google Scholar 

  11. Guo RB, Wang GF, Zhao AP, Gu J, Sun XL, Hu G (2012) Paeoniflorin protects against ischemia-induced brain damages in rats via inhibiting MAPKs/NF-kappaB-mediated inflammatory responses. PLoS One 7:e49701

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Jardin I, Lopez JJ, Berna-Erro A, Salido GM, Rosado JA (2013) Homer proteins in Ca(2)(+) entry. IUBMB Life 65:497–504

    Article  CAS  PubMed  Google Scholar 

  13. Pouliquin P, Pace SM, Dulhunty AF (2009) In vitro modulation of the cardiac ryanodine receptor activity by Homer1. Pflugers Arch 458:723–732

    Article  CAS  PubMed  Google Scholar 

  14. Wang Y, Fei Z, Ma YH, Liu WB, Zhu J, Zhang C, Lin W, Qu Y (2012) VEGF upregulates Homer 1a gene expression via the mitogen-activated protein kinase cascade in cultured cortex neurons. Neurosci Lett 515:44–49

    Article  CAS  PubMed  Google Scholar 

  15. Wagner KV, Hartmann J, Mangold K, Wang XD, Labermaier C, Liebl C, Wolf M, Gassen NC, Holsboer F, Rein T, Muller MB, Schmidt MV (2013) Homer1 mediates acute stress-induced cognitive deficits in the dorsal hippocampus. J Neurosci 33:3857–3864

    Article  CAS  PubMed  Google Scholar 

  16. Ghasemzadeh MB, Vasudevan P, Mueller C, Seubert C, Mantsch JR (2009) Neuroadaptations in the cellular and postsynaptic group 1 metabotropic glutamate receptor mGluR5 and Homer proteins following extinction of cocaine self-administration. Neurosci Lett 452:167–171

    Article  CAS  PubMed  Google Scholar 

  17. Murotomi K, Takagi N, Muroyama A, Kaji N, Takeo S, Tanonaka K (2012) Transient focal cerebral ischemia differentially decreases Homer1a and 1b/c contents in the postsynaptic density. Neurosci Lett 515:92–96

    CAS  PubMed  Google Scholar 

  18. Chen T, Fei F, Jiang XF, Zhang L, Qu Y, Huo K, Fei Z (2012) Down-regulation of Homer1b/c attenuates glutamate-mediated excitotoxicity through endoplasmic reticulum and mitochondria pathways in rat cortical neurons. Free Radic Biol Med 52:208–217

    Article  CAS  PubMed  Google Scholar 

  19. Bonow RH, Aid S, Zhang Y, Becker KG, Bosetti F (2009) The brain expression of genes involved in inflammatory response, the ribosome, and learning and memory is altered by centrally injected lipopolysaccharide in mice. Pharmacogenomics J 9:116–126

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Abbasian M, Sayyah M, Babapour V, Mahdian R, Choopani S, Kaviani B (2012) Upregulation of connexins 30 and 32 gap junctions in rat hippocampus at transcription level by chronic central injection of lipopolysaccharide. Iran Biomed J 16:127–132

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Renton KW, Dibb S, Levatte TL (1999) Lipopolysaccharide evokes the modulation of brain cytochrome P4501A in the rat. Brain Res 842:139–147

    Article  CAS  PubMed  Google Scholar 

  22. Wang Y, Liu Y, Chen Y, Shi S, Qin J, Xiao F, Zhou D, Lu M, Lu Q, Shen A (2009) Peripheral nerve injury induces down-regulation of Foxo3a and p27kip1 in rat dorsal root ganglia. Neurochem Res 34:891–898

    Article  CAS  PubMed  Google Scholar 

  23. Smith TH, Ngwainmbi J, Grider JR, Dewey WL, Akbarali HI (2013) An in vitro preparation of isolated enteric neurons and glia from the myenteric plexus of the adult mouse. J Vis Exp. doi:10.3791/50688

  24. Cao M, Tan X, Jin W, Zheng H, Xu W, Rui Y, Li L, Cao J, Wu X, Cui G, Ke K, Gao Y (2013) Upregulation of Ras homolog enriched in the brain (Rheb) in lipopolysaccharide-induced neuroinflammation. Neurochem Int 62:406–417

    Article  CAS  PubMed  Google Scholar 

  25. Konigsmark BW, Murphy EA (1970) Neuronal populations in the human brain. Nature 228:1335–1336

    Article  CAS  PubMed  Google Scholar 

  26. McNamee EN, Griffin EW, Ryan KM, Ryan KJ, Heffernan S, Harkin A, Connor TJ (2010) Noradrenaline acting at beta-adrenoceptors induces expression of IL-1beta and its negative regulators IL-1ra and IL-1RII, and drives an overall anti-inflammatory phenotype in rat cortex. Neuropharmacology 59:37–48

    Article  CAS  PubMed  Google Scholar 

  27. O’Sullivan JB, Ryan KM, Curtin NM, Harkin A, Connor TJ (2009) Noradrenaline reuptake inhibitors limit neuroinflammation in rat cortex following a systemic inflammatory challenge: implications for depression and neurodegeneration. Int J Neuropsychopharmacol 12:687–699

    Article  PubMed  Google Scholar 

  28. Baby N, Patnala R, Ling EA, Dheen ST (2014) Nanomedicine and its application in treatment of microglia-mediated neuroinflammation. Curr Med Chem 21:4215–4226

  29. Wang SM, Lee YC, Ko CY, Lai MD, Lin DY, Pao PC, Chi JY, Hsiao YW, Liu TL, Wang JM (2014) Increase of zinc finger protein 179 in response to CCAAT/enhancer binding protein delta conferring an antiapoptotic effect in astrocytes of Alzheimer’s disease. Mol Neurobiol. doi:10.1007/s12035-014-8714-9

  30. Su JJ, Pan H, Zhou HG, Tang YP, Dong Q, Liu JR (2014) Acid-sensing ion channels activation and hypoxia upregulate Homer1a expression. CNS Neurosci Ther 20:264–274

    Article  CAS  PubMed  Google Scholar 

  31. Li Y, Popko J, Krogh KA, Thayer SA (2013) Epileptiform stimulus increases Homer 1a expression to modulate synapse number and activity in hippocampal cultures. J Neurophysiol 109:1494–1504

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Minami I, Kengaku M, Smitt PS, Shigemoto R, Hirano T (2003) Long-term potentiation of mGluR1 activity by depolarization-induced Homer1a in mouse cerebellar Purkinje neurons. Eur J Neurosci 17:1023–1032

    Article  PubMed  Google Scholar 

  33. Zhang GC, Mao LM, Liu XY, Parelkar NK, Arora A, Yang L, Hains M, Fibuch EE, Wang JQ (2007) In vivo regulation of Homer1a expression in the striatum by cocaine. Mol Pharmacol 71:1148–1158

    Article  CAS  PubMed  Google Scholar 

  34. Zeng X, Pan ZG, Shao Y, Wu XN, Liu SX, Li NL, Wang WM (2013) SKF-96365 attenuates toxin-induced neuronal injury through opposite regulatory effects on Homer1a and Homer1b/c in cultured rat mesencephalic cells. Neurosci Lett 543:183–188

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Nantong City Social Development Projects Funds (HS 2012032) and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), Nantong University graduate scientific and technological innovation projects (YKC13069).

Conflict of interest

All authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongmei Zhang.

Additional information

Zhiming Cui and Li Zhou have contributed equally to this work and shared first author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, Z., Zhou, L., Liu, C. et al. The Role of Homer1b/c in Neuronal Apoptosis Following LPS-Induced Neuroinflammation. Neurochem Res 40, 204–215 (2015). https://doi.org/10.1007/s11064-014-1460-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-014-1460-6

Keywords

Navigation