Skip to main content

Advertisement

Log in

A Matter of Balance: Role of Neurexin and Neuroligin at the Synapse

  • Overview
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Neurexins and neuroligins are synaptic cell adhesion molecules. Neurexins are primary located on the presynaptic membrane, whereas neuroligins are strictly postsynaptic proteins. Since their discovery, the knowledge of neurexins and neuroligins has expanded, implicating them in various neuronal processes, including the differentiation, maturation, stabilization, and plasticity of both inhibitory and excitatory synapses. Here, we review the most recent results regarding the structure and function of these cell adhesion molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sudhof TC (2008) Neuroligins and neurexins link synaptic function to cognitive disease. Nature 455(7215):903–911. doi:10.1038/nature07456

    Article  PubMed  CAS  Google Scholar 

  2. Ushkaryov YA, Petrenko AG, Geppert M, Sudhof TC (1992) Neurexins: synaptic cell surface proteins related to the alpha-latrotoxin receptor and laminin. Science 257(5066):50–56

    Article  PubMed  CAS  Google Scholar 

  3. Ichtchenko K, Hata Y, Nguyen T, Ullrich B, Missler M, Moomaw C, Sudhof TC (1995) Neuroligin 1: a splice site-specific ligand for beta-neurexins. Cell 81(3):435–443

    Article  PubMed  CAS  Google Scholar 

  4. Siddiqui TJ, Pancaroglu R, Kang Y, Rooyakkers A, Craig AM (2010) LRRTMs and neuroligins bind neurexins with a differential code to cooperate in glutamate synapse development. J Neurosci 30(22):7495–7506. doi:10.1523/JNEUROSCI.0470-10.2010

    Article  PubMed  CAS  Google Scholar 

  5. Arac D, Boucard AA, Ozkan E, Strop P, Newell E, Sudhof TC, Brunger AT (2007) Structures of neuroligin-1 and the neuroligin-1/neurexin-1 beta complex reveal specific protein–protein and protein-Ca2+ interactions. Neuron 56(6):992–1003

    Article  PubMed  CAS  Google Scholar 

  6. Taniguchi H, Gollan L, Scholl FG, Mahadomrongkul V, Dobler E, Limthong N, Peck M, Aoki C, Scheiffele P (2007) Silencing of neuroligin function by postsynaptic neurexins. J Neurosci 27(11):2815–2824. doi:10.1523/JNEUROSCI.0032-07.2007

    Article  PubMed  CAS  Google Scholar 

  7. Rudenko G, Nguyen T, Chelliah Y, Sudhof TC, Deisenhofer J (1999) The structure of the ligand-binding domain of neurexin 1β: regulation of LNS domain function by alternative splicing. Cell 99(1):93–101

    Article  PubMed  CAS  Google Scholar 

  8. Ushkaryov YA, Hata Y, Ichtchenko K, Moomaw C, Afendis S, Slaughter CA, Sudhof TC (1994) Conserved domain structure of beta-neurexins. Unusual cleaved signal sequences in receptor-like neuronal cell-surface proteins. J Biol Chem 269(16):11987–11992

    PubMed  CAS  Google Scholar 

  9. Bolliger MF, Pei J, Maxeiner S, Boucard AA, Grishin NV, Sudhof TC (2008) Unusually rapid evolution of Neuroligin-4 in mice. Proc Natl Acad Sci USA 105(17):6421–6426. doi:10.1073/pnas.0801383105

    Article  PubMed  CAS  Google Scholar 

  10. Boucard AA, Chubykin AA, Comoletti D, Taylor P, Sudhof TC (2005) A splice code for trans-synaptic cell adhesion mediated by binding of neuroligin 1 to alpha- and beta-neurexins. Neuron 48(2):229–236

    Article  PubMed  CAS  Google Scholar 

  11. Kurschner C, Mermelstein PG, Holden WT, Surmeier DJ (1998) CIPP, a novel multivalent PDZ domain protein, selectively interacts with Kir4.0 family members, NMDA receptor subunits, neurexins, and neuroligins. Mol Cell Neurosci 11(3):161–172. doi:10.1006/mcne.1998.0679

    Article  PubMed  CAS  Google Scholar 

  12. Chen X, Liu H, Shim AH, Focia PJ, He X (2008) Structural basis for synaptic adhesion mediated by neuroligin-neurexin interactions. Nat Struct Mol Biol 15(1):50–56. doi:10.1038/nsmb1350

    Article  PubMed  CAS  Google Scholar 

  13. Comoletti D, Flynn R, Jennings LL, Chubykin A, Matsumura T, Hasegawa H, Sudhof TC, Taylor P (2003) Characterization of the interaction of a recombinant soluble neuroligin-1 with neurexin-1beta. J Biol Chem 278(50):50497–50505. doi:10.1074/jbc.M306803200

    Article  PubMed  CAS  Google Scholar 

  14. Dean C, Scholl FG, Choih J, DeMaria S, Berger J, Isacoff E, Scheiffele P (2003) Neurexin mediates the assembly of presynaptic terminals. Nat Neurosci 6(7):708–716. doi:10.1038/nn1074

    Article  PubMed  CAS  Google Scholar 

  15. Poulopoulos A, Soykan T, Tuffy LP, Hammer M, Varoqueaux F, Brose N (2012) Homodimerization and isoform-specific heterodimerization of neuroligins. Biochem J 446(2):321–330. doi:10.1042/BJ20120808

    Article  PubMed  CAS  Google Scholar 

  16. Shipman SL, Nicoll RA (2012) Dimerization of postsynaptic neuroligin drives synaptic assembly via transsynaptic clustering of neurexin. Proc Natl Acad Sci USA 109(47):19432–19437. doi:10.1073/pnas.1217633109

    Article  PubMed  CAS  Google Scholar 

  17. Lise MF, El-Husseini A (2006) The neuroligin and neurexin families: from structure to function at the synapse. Cell Mol Life Sci 63(16):1833–1849. doi:10.1007/s00018-006-6061-3

    Article  PubMed  CAS  Google Scholar 

  18. Saura CA, Servian-Morilla E, Scholl FG (2011) Presenilin/gamma-secretase regulates neurexin processing at synapses. PLoS ONE 6(4):e19430. doi:10.1371/journal.pone.0019430

    Article  PubMed  CAS  Google Scholar 

  19. Bot N, Schweizer C, Ben Halima S, Fraering PC (2011) Processing of the synaptic cell adhesion molecule neurexin-3beta by Alzheimer disease alpha- and gamma-secretases. J Biol Chem 286(4):2762–2773. doi:10.1074/jbc.M110.142521

    Article  PubMed  CAS  Google Scholar 

  20. Suzuki K, Hayashi Y, Nakahara S, Kumazaki H, Prox J, Horiuchi K, Zeng M, Tanimura S, Nishiyama Y, Osawa S, Sehara-Fujisawa A, Saftig P, Yokoshima S, Fukuyama T, Matsuki N, Koyama R, Tomita T, Iwatsubo T (2012) Activity-dependent proteolytic cleavage of neuroligin-1. Neuron 76(2):410–422. doi:10.1016/j.neuron.2012.10.003

    Article  PubMed  CAS  Google Scholar 

  21. Peixoto RT, Kunz PA, Kwon H, Mabb AM, Sabatini BL, Philpot BD, Ehlers MD (2012) Transsynaptic signaling by activity-dependent cleavage of neuroligin-1. Neuron 76(2):396–409. doi:10.1016/j.neuron.2012.07.006

    Article  PubMed  CAS  Google Scholar 

  22. Occhi G, Rampazzo A, Beffagna G, Antonio Danieli G (2002) Identification and characterization of heart-specific splicing of human neurexin 3 mRNA (NRXN3). Biochem Biophys Res Commun 298(1):151–155

    Article  PubMed  CAS  Google Scholar 

  23. Puschel AW, Betz H (1995) Neurexins are differentially expressed in the embryonic nervous system of mice. J Neurosci 15(4):2849–2856

    PubMed  CAS  Google Scholar 

  24. Song JY, Ichtchenko K, Sudhof TC, Brose N (1999) Neuroligin 1 is a postsynaptic cell-adhesion molecule of excitatory synapses. Proc Natl Acad Sci USA 96(3):1100–1105

    Article  PubMed  CAS  Google Scholar 

  25. Varoqueaux F, Aramuni G, Rawson RL, Mohrmann R, Missler M, Gottmann K, Zhang W, Sudhof TC, Brose N (2006) Neuroligins determine synapse maturation and function. Neuron 51(6):741–754

    Article  PubMed  CAS  Google Scholar 

  26. Gilbert M, Smith J, Roskams AJ, Auld VJ (2001) Neuroligin 3 is a vertebrate gliotactin expressed in the olfactory ensheathing glia, a growth-promoting class of macroglia. Glia 34(3):151–164

    Article  PubMed  CAS  Google Scholar 

  27. Suckow AT, Comoletti D, Waldrop MA, Mosedale M, Egodage S, Taylor P, Chessler SD (2008) Expression of neurexin, neuroligin, and their cytoplasmic binding partners in the pancreatic beta-cells and the involvement of neuroligin in insulin secretion. Endocrinology 149(12):6006–6017. doi:10.1210/en.2008-0274

    Article  PubMed  CAS  Google Scholar 

  28. Kang HS, Lee CK, Kim JR, Yu SJ, Kang SG, Moon DH, Lee CH, Kim DK (2004) Gene expression analysis of the pro-oestrous-stage rat uterus reveals neuroligin 2 as a novel steroid-regulated gene. Reprod Fertil Dev 16(8):763–772

    Article  PubMed  CAS  Google Scholar 

  29. Bolliger MF, Frei K, Winterhalter KH, Gloor SM (2001) Identification of a novel neuroligin in humans which binds to PSD-95 and has a widespread expression. Biochem J 356(Pt 2):581–588

    Article  PubMed  CAS  Google Scholar 

  30. Philibert RA, Winfield SL, Sandhu HK, Martin BM, Ginns EI (2000) The structure and expression of the human neuroligin-3 gene. Gene 246(1–2):303–310

    Article  PubMed  CAS  Google Scholar 

  31. Sugita S, Saito F, Tang J, Satz J, Campbell K, Sudhof TC (2001) A stoichiometric complex of neurexins and dystroglycan in brain. J Cell Biol 154(2):435–445

    Article  PubMed  CAS  Google Scholar 

  32. Missler M, Hammer RE, Sudhof TC (1998) Neurexophilin binding to alpha-neurexins. A single LNS domain functions as an independently folding ligand-binding unit. J Biol Chem 273(52):34716–34723

    Article  PubMed  CAS  Google Scholar 

  33. de Wit J, Sylwestrak E, O’Sullivan ML, Otto S, Tiglio K, Savas JN, Yates JR 3rd, Comoletti D, Taylor P, Ghosh A (2009) LRRTM2 interacts with Neurexin1 and regulates excitatory synapse formation. Neuron 64(6):799–806. doi:10.1016/j.neuron.2009.12.019

    Article  PubMed  CAS  Google Scholar 

  34. Ko J, Fuccillo MV, Malenka RC, Sudhof TC (2009) LRRTM2 functions as a neurexin ligand in promoting excitatory synapse formation. Neuron 64(6):791–798. doi:10.1016/j.neuron.2009.12.012

    Article  PubMed  CAS  Google Scholar 

  35. Linhoff MW, Lauren J, Cassidy RM, Dobie FA, Takahashi H, Nygaard HB, Airaksinen MS, Strittmatter SM, Craig AM (2009) An unbiased expression screen for synaptogenic proteins identifies the LRRTM protein family as synaptic organizers. Neuron 61(5):734–749. doi:10.1016/j.neuron.2009.01.017

    Article  PubMed  CAS  Google Scholar 

  36. Lee SJ, Uemura T, Yoshida T, Mishina M (2012) GluRdelta2 assembles four neurexins into trans-synaptic triad to trigger synapse formation. J Neurosci 32(13):4688–4701. doi:10.1523/JNEUROSCI.5584-11.2012

    Article  PubMed  CAS  Google Scholar 

  37. Lim SH, Kwon SK, Lee MK, Moon J, Jeong DG, Park E, Kim SJ, Park BC, Lee SC, Ryu SE, Yu DY, Chung BH, Kim E, Myung PK, Lee JR (2009) Synapse formation regulated by protein tyrosine phosphatase receptor T through interaction with cell adhesion molecules and Fyn. EMBO J 28(22):3564–3578. doi:10.1038/emboj.2009.289

    Article  PubMed  CAS  Google Scholar 

  38. Hata Y, Butz S, Sudhof TC (1996) CASK: a novel dlg/PSD95 homolog with an N-terminal calmodulin-dependent protein kinase domain identified by interaction with neurexins. J Neurosci 16(8):2488–2494

    PubMed  CAS  Google Scholar 

  39. Mukherjee K, Sharma M, Urlaub H, Bourenkov GP, Jahn R, Sudhof TC, Wahl MC (2008) CASK Functions as a Mg2 + -independent neurexin kinase. Cell 133(2):328–339. doi:10.1016/j.cell.2008.02.036

    Article  PubMed  CAS  Google Scholar 

  40. Biederer T, Sudhof TC (2001) CASK and protein 4.1 support F-actin nucleation on neurexins. J Biol Chem 276(51):47869–47876. doi:10.1074/jbc.M105287200

    PubMed  CAS  Google Scholar 

  41. Hata Y, Davletov B, Petrenko AG, Jahn R, Sudhof TC (1993) Interaction of synaptotagmin with the cytoplasmic domains of neurexins. Neuron 10(2):307–315

    Article  PubMed  CAS  Google Scholar 

  42. Borg JP, Lopez-Figueroa MO, de Taddeo-Borg M, Kroon DE, Turner RS, Watson SJ, Margolis B (1999) Molecular analysis of the X11-mLin-2/CASK complex in brain. J Neurosci 19(4):1307–1316

    PubMed  CAS  Google Scholar 

  43. Irie M, Hata Y, Takeuchi M, Ichtchenko K, Toyoda A, Hirao K, Takai Y, Rosahl TW, Sudhof TC (1997) Binding of neuroligins to PSD-95. Science 277(5331):1511–1515

    Article  PubMed  CAS  Google Scholar 

  44. Stan A, Pielarski KN, Brigadski T, Wittenmayer N, Fedorchenko O, Gohla A, Lessmann V, Dresbach T, Gottmann K (2010) Essential cooperation of N-cadherin and neuroligin-1 in the transsynaptic control of vesicle accumulation. Proc Natl Acad Sci USA 107(24):11116–11121. doi:10.1073/pnas.0914233107

    Article  PubMed  CAS  Google Scholar 

  45. Poulopoulos A, Aramuni G, Meyer G, Soykan T, Hoon M, Papadopoulos T, Zhang M, Paarmann I, Fuchs C, Harvey K, Jedlicka P, Schwarzacher SW, Betz H, Harvey RJ, Brose N, Zhang W, Varoqueaux F (2009) Neuroligin 2 drives postsynaptic assembly at perisomatic inhibitory synapses through gephyrin and collybistin. Neuron 63(5):628–642. doi:10.1016/j.neuron.2009.08.023

    Article  PubMed  CAS  Google Scholar 

  46. Chih B, Gollan L, Scheiffele P (2006) Alternative splicing controls selective trans-synaptic interactions of the neuroligin-neurexin complex. Neuron 51(2):171–178

    Article  PubMed  CAS  Google Scholar 

  47. Graf ER, Kang Y, Hauner AM, Craig AM (2006) Structure function and splice site analysis of the synaptogenic activity of the neurexin-1 beta LNS domain. J Neurosci 26(16):4256–4265. doi:10.1523/JNEUROSCI.1253-05.2006

    Article  PubMed  CAS  Google Scholar 

  48. Koehnke J, Katsamba PS, Ahlsen G, Bahna F, Vendome J, Honig B, Shapiro L, Jin X (2010) Splice form dependence of beta-neurexin/neuroligin binding interactions. Neuron 67(1):61–74. doi:10.1016/j.neuron.2010.06.001

    Article  PubMed  CAS  Google Scholar 

  49. Joo JY, Lee SJ, Uemura T, Yoshida T, Yasumura M, Watanabe M, Mishina M (2011) Differential interactions of cerebellin precursor protein (Cbln) subtypes and neurexin variants for synapse formation of cortical neurons. Biochem Biophys Res Commun 406(4):627–632. doi:10.1016/j.bbrc.2011.02.108

    Article  PubMed  CAS  Google Scholar 

  50. Matsuda K, Yuzaki M (2011) Cbln family proteins promote synapse formation by regulating distinct neurexin signaling pathways in various brain regions. Eur J Neurosci 33(8):1447–1461. doi:10.1111/j.1460-9568.2011.07638.x

    Article  PubMed  Google Scholar 

  51. Uemura T, Lee SJ, Yasumura M, Takeuchi T, Yoshida T, Ra M, Taguchi R, Sakimura K, Mishina M (2010) Trans-synaptic interaction of GluRdelta2 and Neurexin through Cbln1 mediates synapse formation in the cerebellum. Cell 141(6):1068–1079. doi:10.1016/j.cell.2010.04.035

    Article  PubMed  CAS  Google Scholar 

  52. Iijima T, Wu K, Witte H, Hanno-Iijima Y, Glatter T, Richard S, Scheiffele P (2011) SAM68 regulates neuronal activity-dependent alternative splicing of neurexin-1. Cell 147(7):1601–1614. doi:10.1016/j.cell.2011.11.028

    Article  PubMed  CAS  Google Scholar 

  53. Chen F, Venugopal V, Murray B, Rudenko G (2011) The structure of neurexin 1alpha reveals features promoting a role as synaptic organizer. Structure 19(6):779–789. doi:10.1016/j.str.2011.03.012

    Article  PubMed  CAS  Google Scholar 

  54. Miller MT, Mileni M, Comoletti D, Stevens RC, Harel M, Taylor P (2011) The crystal structure of the alpha-neurexin-1 extracellular region reveals a hinge point for mediating synaptic adhesion and function. Structure 19(6):767–778. doi:10.1016/j.str.2011.03.011

    Article  PubMed  CAS  Google Scholar 

  55. Tanaka H, Nogi T, Yasui N, Iwasaki K, Takagi J (2011) Structural basis for variant-specific neuroligin-binding by alpha-neurexin. PLoS One 6(4):e19411. doi:10.1371/journal.pone.0019411

    Article  PubMed  CAS  Google Scholar 

  56. Shen KC, Kuczynska DA, Wu IJ, Murray BH, Sheckler LR, Rudenko G (2008) Regulation of neurexin 1beta tertiary structure and ligand binding through alternative splicing. Structure 16(3):422–431. doi:10.1016/j.str.2008.01.005

    Article  PubMed  CAS  Google Scholar 

  57. Fabrichny IP, Leone P, Sulzenbacher G, Comoletti D, Miller MT, Taylor P, Bourne Y, Marchot P (2007) Structural analysis of the synaptic protein neuroligin and its beta-neurexin complex: determinants for folding and cell adhesion. Neuron 56(6):979–991. doi:10.1016/j.neuron.2007.11.013

    Article  PubMed  CAS  Google Scholar 

  58. Levinson JN, El-Husseini A (2007) A crystal-clear interaction: relating neuroligin/neurexin complex structure to function at the synapse. Neuron 56(6):937–939. doi:10.1016/j.neuron.2007.12.003

    Article  PubMed  CAS  Google Scholar 

  59. Tanaka H, Miyazaki N, Matoba K, Nogi T, Iwasaki K, Takagi J (2012) Higher-order architecture of cell adhesion mediated by polymorphic synaptic adhesion molecules neurexin and neuroligin. Cell Rep 2(1):101–110. doi:10.1016/j.celrep.2012.06.009

    Article  PubMed  CAS  Google Scholar 

  60. Garner CC, Waites CL, Ziv NE (2006) Synapse development: still looking for the forest, still lost in the trees. Cell Tissue Res 326(2):249–262

    Article  PubMed  Google Scholar 

  61. Scheiffele P, Fan J, Choih J, Fetter R, Serafini T (2000) Neuroligin expressed in nonneuronal cells triggers presynaptic development in contacting axons. Cell 101(6):657–669

    Article  PubMed  CAS  Google Scholar 

  62. Graf ER, Zhang X, Jin SX, Linhoff MW, Craig AM (2004) Neurexins induce differentiation of GABA and glutamate postsynaptic specializations via neuroligins. Cell 119(7):1013–1026. doi:10.1016/j.cell.2004.11.035

    Article  PubMed  CAS  Google Scholar 

  63. Chubykin AA, Atasoy D, Etherton MR, Brose N, Kavalali ET, Gibson JR, Sudhof TC (2007) Activity-dependent validation of excitatory versus inhibitory synapses by neuroligin-1 versus neuroligin-2. Neuron 54(6):919–931. doi:10.1016/j.neuron.2007.05.029

    Article  PubMed  CAS  Google Scholar 

  64. Levinson JN, Chery N, Huang K, Wong TP, Gerrow K, Kang R, Prange O, Wang YT, El-Husseini A (2005) Neuroligins mediate excitatory and inhibitory synapse formation: involvement of PSD-95 and neurexin-1beta in neuroligin-induced synaptic specificity. J Biol Chem 280(17):17312–17319

    Article  PubMed  CAS  Google Scholar 

  65. Prange O, Wong TP, Gerrow K, Wang YT, El-Husseini A (2004) A balance between excitatory and inhibitory synapses is controlled by PSD-95 and neuroligin. Proc Natl Acad Sci USA 101(38):13915–13920. doi:10.1073/pnas.0405939101

    Article  PubMed  CAS  Google Scholar 

  66. Varley ZK, Pizzarelli R, Antonelli R, Stancheva SH, Kneussel M, Cherubini E, Zacchi P (2011) Gephyrin regulates GABAergic and glutamatergic synaptic transmission in hippocampal cell cultures. J Biol Chem 286(23):20942–20951. doi:10.1074/jbc.M111.234641

    Article  PubMed  CAS  Google Scholar 

  67. Gerrow K, Romorini S, Nabi SM, Colicos MA, Sala C, El-Husseini A (2006) A preformed complex of postsynaptic proteins is involved in excitatory synapse development. Neuron 49(4):547–562. doi:10.1016/j.neuron.2006.01.015

    Article  PubMed  CAS  Google Scholar 

  68. Gjørlund MD, Nielsen J, Pankratova S, Li S, Korshunova I, Bock E, Berezin V (2012) Neuroligin-1 induces neurite outgrowth through interaction with neurexin-1beta and activation of fibroblast growth factor receptor-1. Faseb J 26(10):4174–4186. doi:10.1096/fj.11-202242

    Article  PubMed  CAS  Google Scholar 

  69. Chih B, Engelman H, Scheiffele P (2005) Control of excitatory and inhibitory synapse formation by neuroligins. Science 307(5713):1324–1328

    Article  PubMed  CAS  Google Scholar 

  70. Jung SY, Kim J, Kwon OB, Jung JH, An K, Jeong AY, Lee CJ, Choi YB, Bailey CH, Kandel ER, Kim JH (2010) Input-specific synaptic plasticity in the amygdala is regulated by neuroligin-1 via postsynaptic NMDA receptors. Proc Natl Acad Sci USA 107(10):4710–4715. doi:10.1073/pnas.1001084107

    Article  PubMed  CAS  Google Scholar 

  71. Kim J, Jung SY, Lee YK, Park S, Choi JS, Lee CJ, Kim HS, Choi YB, Scheiffele P, Bailey CH, Kandel ER, Kim JH (2008) Neuroligin-1 is required for normal expression of LTP and associative fear memory in the amygdala of adult animals. Proc Natl Acad Sci USA 105(26):9087–9092. doi:10.1073/pnas.0803448105

    Article  PubMed  CAS  Google Scholar 

  72. Ko J, Soler-Llavina GJ, Fuccillo MV, Malenka RC, Sudhof TC (2011) Neuroligins/LRRTMs prevent activity- and Ca2+/calmodulin-dependent synapse elimination in cultured neurons. J Cell Biol 194(2):323–334. doi:10.1083/jcb.201101072

    Article  PubMed  CAS  Google Scholar 

  73. Shipman SL, Schnell E, Hirai T, Chen BS, Roche KW, Nicoll RA (2011) Functional dependence of neuroligin on a new non-PDZ intracellular domain. Nat Neurosci 14(6):718–726. doi:10.1038/nn.2825

    Article  PubMed  CAS  Google Scholar 

  74. Chen SX, Tari PK, She K, Haas K (2010) Neurexin-neuroligin cell adhesion complexes contribute to synaptotropic dendritogenesis via growth stabilization mechanisms in vivo. Neuron 67(6):967–983. doi:10.1016/j.neuron.2010.08.016

    Article  PubMed  CAS  Google Scholar 

  75. Missler M, Zhang W, Rohlmann A, Kattenstroth G, Hammer RE, Gottmann K, Sudhof TC (2003) Alpha-neurexins couple Ca2+channels to synaptic vesicle exocytosis. Nature 423(6943):939–948. doi:10.1038/nature01755

    Article  PubMed  CAS  Google Scholar 

  76. Ben-Ari Y, Gaiarsa JL, Tyzio R, Khazipov R (2007) GABA: a pioneer transmitter that excites immature neurons and generates primitive oscillations. Physiol Rev 87(4):1215–1284. doi:10.1152/physrev.00017.2006

    Article  PubMed  CAS  Google Scholar 

  77. Kwon HB, Kozorovitskiy Y, Oh WJ, Peixoto RT, Akhtar N, Saulnier JL, Gu C, Sabatini BL (2012) Neuroligin-1-dependent competition regulates cortical synaptogenesis and synapse number. Nat Neurosci 15(12):1667–1674. doi:10.1038/nn.3256

    Article  PubMed  CAS  Google Scholar 

  78. Biederer T, Sara Y, Mozhayeva M, Atasoy D, Liu X, Kavalali ET, Sudhof TC (2002) SynCAM, a synaptic adhesion molecule that drives synapse assembly. Science 297(5586):1525–1531

    Article  PubMed  CAS  Google Scholar 

  79. Soler-Llavina GJ, Fuccillo MV, Ko J, Sudhof TC, Malenka RC (2011) The neurexin ligands, neuroligins and leucine-rich repeat transmembrane proteins, perform convergent and divergent synaptic functions in vivo. Proc Natl Acad Sci USA 108(40):16502–16509. doi:10.1073/pnas.1114028108

    Article  PubMed  CAS  Google Scholar 

  80. Ko J, Zhang C, Arac D, Boucard AA, Brunger AT, Sudhof TC (2009) Neuroligin-1 performs neurexin-dependent and neurexin-independent functions in synapse validation. EMBO J 28(20):3244–3255. doi:10.1038/emboj.2009.249

    Article  PubMed  CAS  Google Scholar 

  81. Barrow SL, Constable JR, Clark E, El-Sabeawy F, McAllister AK, Washbourne P (2009) Neuroligin1: a cell adhesion molecule that recruits PSD-95 and NMDA receptors by distinct mechanisms during synaptogenesis. Neural development 4:17. doi:10.1186/1749-8104-4-17

    Article  PubMed  CAS  Google Scholar 

  82. Mondin M, Labrousse V, Hosy E, Heine M, Tessier B, Levet F, Poujol C, Blanchet C, Choquet D, Thoumine O (2011) Neurexin-neuroligin adhesions capture surface-diffusing AMPA receptors through PSD-95 scaffolds. J Neurosci 31(38):13500–13515. doi:10.1523/JNEUROSCI.6439-10.2011

    Article  PubMed  CAS  Google Scholar 

  83. Thyagarajan A, Ting AY (2010) Imaging activity-dependent regulation of neurexin-neuroligin interactions using trans-synaptic enzymatic biotinylation. Cell 143(3):456–469. doi:10.1016/j.cell.2010.09.025

    Article  PubMed  CAS  Google Scholar 

  84. Nam CI, Chen L (2005) Postsynaptic assembly induced by neurexin-neuroligin interaction and neurotransmitter. Proc Natl Acad Sci USA 102(17):6137–6142. doi:10.1073/pnas.0502038102

    Article  PubMed  CAS  Google Scholar 

  85. Heine M, Thoumine O, Mondin M, Tessier B, Giannone G, Choquet D (2008) Activity-independent and subunit-specific recruitment of functional AMPA receptors at neurexin/neuroligin contacts. Proc Natl Acad Sci USA 105(52):20947–20952. doi:10.1073/pnas.0804007106

    Article  PubMed  CAS  Google Scholar 

  86. Tanaka H, Hirano T (2012) Visualization of subunit-specific delivery of glutamate receptors to postsynaptic membrane during hippocampal long-term potentiation. Cell Rep 1(4):291–298. doi:10.1016/j.celrep.2012.02.004

    Article  PubMed  CAS  Google Scholar 

  87. Levinson JN, Li R, Kang R, Moukhles H, El-Husseini A, Bamji SX (2010) Postsynaptic scaffolding molecules modulate the localization of neuroligins. Neuroscience 165(3):782–793. doi:10.1016/j.neuroscience.2009.11.016

    Article  PubMed  CAS  Google Scholar 

  88. Budreck EC, Scheiffele P (2007) Neuroligin-3 is a neuronal adhesion protein at GABAergic and glutamatergic synapses. Eur J Neurosci 26(7):1738–1748. doi:10.1111/j.1460-9568.2007.05842.x

    Article  PubMed  Google Scholar 

  89. Baudouin SJ, Gaudias J, Gerharz S, Hatstatt L, Zhou K, Punnakkal P, Tanaka KF, Spooren W, Hen R, De Zeeuw CI, Vogt K, Scheiffele P (2012) Shared synaptic pathophysiology in syndromic and nonsyndromic rodent models of autism. Science 338(6103):128–132. doi:10.1126/science.1224159

    Article  PubMed  CAS  Google Scholar 

  90. Budreck EC, Kwon OB, Jung JH, Baudouin S, Thommen A, Kim HS, Fukazawa Y, Harada H, Tabuchi K, Shigemoto R, Scheiffele P, Kim JH (2013) Neuroligin-1 controls synaptic abundance of NMDA-type glutamate receptors through extracellular coupling. Proc Natl Acad Sci USA 110(2):725–730. doi:10.1073/pnas.1214718110

    Article  PubMed  CAS  Google Scholar 

  91. Shipman SL, Nicoll RA (2012) A subtype-specific function for the extracellular domain of neuroligin 1 in hippocampal LTP. Neuron 76(2):309–316. doi:10.1016/j.neuron.2012.07.024

    Article  PubMed  CAS  Google Scholar 

  92. Banovic D, Khorramshahi O, Owald D, Wichmann C, Riedt T, Fouquet W, Tian R, Sigrist SJ, Aberle H (2010) Drosophila neuroligin 1 promotes growth and postsynaptic differentiation at glutamatergic neuromuscular junctions. Neuron 66(5):724–738. doi:10.1016/j.neuron.2010.05.020

    Article  PubMed  CAS  Google Scholar 

  93. Tao HW, Poo M (2001) Retrograde signaling at central synapses. Proc Natl Acad Sci USA 98(20):11009–11015. doi:10.1073/pnas.191351698

    Article  PubMed  CAS  Google Scholar 

  94. Futai K, Kim MJ, Hashikawa T, Scheiffele P, Sheng M, Hayashi Y (2007) Retrograde modulation of presynaptic release probability through signaling mediated by PSD-95-neuroligin. Nat Neurosci 10(2):186–195. doi:10.1038/nn1837

    Article  PubMed  CAS  Google Scholar 

  95. Aiga M, Levinson JN, Bamji SX (2011) N-cadherin and neuroligins cooperate to regulate synapse formation in hippocampal cultures. J Biol Chem 286(1):851–858. doi:10.1074/jbc.M110.176305

    Article  PubMed  CAS  Google Scholar 

  96. Hu Z, Hom S, Kudze T, Tong XJ, Choi S, Aramuni G, Zhang W, Kaplan JM (2012) Neurexin and neuroligin mediate retrograde synaptic inhibition in C. elegans. Science 337(6097):980–984. doi:10.1126/science.1224896

    Article  PubMed  CAS  Google Scholar 

  97. Fu Z, Vicini S (2009) Neuroligin-2 accelerates GABAergic synapse maturation in cerebellar granule cells. Mol Cell Neurosci 42(1):45–55. doi:10.1016/j.mcn.2009.05.004

    Article  PubMed  CAS  Google Scholar 

  98. Kang Y, Zhang X, Dobie F, Wu H, Craig AM (2008) Induction of GABAergic postsynaptic differentiation by alpha-neurexins. J Biol Chem 283(4):2323–2334. doi:10.1074/jbc.M703957200

    Article  PubMed  CAS  Google Scholar 

  99. Fu Y, Huang ZJ (2010) Differential dynamics and activity-dependent regulation of alpha- and beta-neurexins at developing GABAergic synapses. Proc Natl Acad Sci USA 107(52):22699–22704. doi:10.1073/pnas.1011233108

    Article  PubMed  CAS  Google Scholar 

  100. Ganguly K, Schinder AF, Wong ST, Poo M (2001) GABA itself promotes the developmental switch of neuronal GABAergic responses from excitation to inhibition. Cell 105(4):521–532

    Article  PubMed  CAS  Google Scholar 

  101. Spolidoro M, Sale A, Berardi N, Maffei L (2009) Plasticity in the adult brain: lessons from the visual system. Exp Brain Res 192(3):335–341. doi:10.1007/s00221-008-1509-3

    Article  PubMed  Google Scholar 

  102. Zhang C, Atasoy D, Arac D, Yang X, Fucillo MV, Robison AJ, Ko J, Brunger AT, Sudhof TC (2010) Neurexins physically and functionally interact with GABA(A) receptors. Neuron 66(3):403–416. doi:10.1016/j.neuron.2010.04.008

    Article  PubMed  CAS  Google Scholar 

  103. Hines RM, Wu L, Hines DJ, Steenland H, Mansour S, Dahlhaus R, Singaraja RR, Cao X, Sammler E, Hormuzdi SG, Zhuo M, El-Husseini A (2008) Synaptic imbalance, stereotypies, and impaired social interactions in mice with altered neuroligin 2 expression. J Neurosci 28(24):6055–6067. doi:10.1523/JNEUROSCI.0032-08.2008

    Article  PubMed  CAS  Google Scholar 

  104. Dahlhaus R, Hines RM, Eadie BD, Kannangara TS, Hines DJ, Brown CE, Christie BR, El-Husseini A (2010) Overexpression of the cell adhesion protein neuroligin-1 induces learning deficits and impairs synaptic plasticity by altering the ratio of excitation to inhibition in the hippocampus. Hippocampus 20(2):305–322. doi:10.1002/hipo.20630

    Article  PubMed  CAS  Google Scholar 

  105. Zoghbi HY (2003) Postnatal neurodevelopmental disorders: meeting at the synapse? Science 302(5646):826–830. doi:10.1126/science.1089071

    Article  PubMed  CAS  Google Scholar 

  106. Abrahams BS, Geschwind DH (2008) Advances in autism genetics: on the threshold of a new neurobiology. Nat Rev Genet 9(5):341–355. doi:10.1038/nrg2346

    Article  PubMed  CAS  Google Scholar 

  107. Rubenstein JL (2010) Three hypotheses for developmental defects that may underlie some forms of autism spectrum disorder. Curr Opin Neurol 23(2):118–123. doi:10.1097/WCO.0b013e328336eb13

    Article  PubMed  Google Scholar 

  108. Amaral DG, Schumann CM, Nordahl CW (2008) Neuroanatomy of autism. Trends Neurosci 31(3):137–145. doi:10.1016/j.tins.2007.12.005

    Article  PubMed  CAS  Google Scholar 

  109. Cholfin JA, Rubenstein JL (2007) Genetic regulation of prefrontal cortex development and function. Novartis Foundation symposium 288:165–173; discussion 173–167, 276–181

    Google Scholar 

  110. Beenken A, Mohammadi M (2009) The FGF family: biology, pathophysiology and therapy. Nat Rev Drug Discov 8(3):235–253. doi:10.1038/nrd2792

    Article  PubMed  CAS  Google Scholar 

  111. Cholfin JA, Rubenstein JL (2008) Frontal cortex subdivision patterning is coordinately regulated by Fgf8, Fgf17, and Emx2. J Comp Neurol 509(2):144–155. doi:10.1002/cne.21709

    Article  PubMed  Google Scholar 

  112. Storm EE, Garel S, Borello U, Hebert JM, Martinez S, McConnell SK, Martin GR, Rubenstein JL (2006) Dose-dependent functions of Fgf8 in regulating telencephalic patterning centers. Development 133(9):1831–1844. doi:10.1242/dev.02324

    Article  PubMed  CAS  Google Scholar 

  113. Etherton M, Foldy C, Sharma M, Tabuchi K, Liu X, Shamloo M, Malenka RC, Sudhof TC (2011) Autism-linked neuroligin-3 R451C mutation differentially alters hippocampal and cortical synaptic function. Proc Natl Acad Sci USA 108(33):13764–13769. doi:10.1073/pnas.1111093108

    Article  PubMed  CAS  Google Scholar 

  114. Chih B, Afridi SK, Clark L, Scheiffele P (2004) Disorder-associated mutations lead to functional inactivation of neuroligins. Hum Mol Genet 13(14):1471–1477. doi:10.1093/hmg/ddh158

    Article  PubMed  CAS  Google Scholar 

  115. Comoletti D, De Jaco A, Jennings LL, Flynn RE, Gaietta G, Tsigelny I, Ellisman MH, Taylor P (2004) The Arg451Cys-neuroligin-3 mutation associated with autism reveals a defect in protein processing. J Neurosci 24(20):4889–4893. doi:10.1523/JNEUROSCI.0468-04.2004

    Article  PubMed  CAS  Google Scholar 

  116. Khosravani H, Altier C, Zamponi GW, Colicos MA (2005) The Arg473Cys-neuroligin-1 mutation modulates NMDA mediated synaptic transmission and receptor distribution in hippocampal neurons. FEBS Lett 579(29):6587–6594. doi:10.1016/j.febslet.2005.10.051

    Article  PubMed  CAS  Google Scholar 

  117. Jamain S, Quach H, Betancur C, Rastam M, Colineaux C, Gillberg IC, Soderstrom H, Giros B, Leboyer M, Gillberg C, Bourgeron T (2003) Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. Nat Genet 34(1):27–29

    Article  PubMed  CAS  Google Scholar 

  118. Etherton MR, Tabuchi K, Sharma M, Ko J, Sudhof TC (2011) An autism-associated point mutation in the neuroligin cytoplasmic tail selectively impairs AMPA receptor-mediated synaptic transmission in hippocampus. EMBO J 30(14):2908–2919. doi:10.1038/emboj.2011.182

    Article  PubMed  CAS  Google Scholar 

  119. Baron-Cohen S, Ring HA, Bullmore ET, Wheelwright S, Ashwin C, Williams SC (2000) The amygdala theory of autism. Neurosci Biobehav Rev 24(3):355–364

    Article  PubMed  CAS  Google Scholar 

  120. Lewis DA, Lieberman JA (2000) Catching up on schizophrenia: natural history and neurobiology. Neuron 28(2):325–334

    Article  PubMed  CAS  Google Scholar 

  121. Moghaddam B, Javitt D (2012) From revolution to evolution: the glutamate hypothesis of schizophrenia and its implication for treatment. Neuropsychopharmacology 37(1):4–15. doi:10.1038/npp.2011.181

    Article  PubMed  CAS  Google Scholar 

  122. Xu B, Ionita-Laza I, Roos JL, Boone B, Woodrick S, Sun Y, Levy S, Gogos JA, Karayiorgou M (2012) De novo gene mutations highlight patterns of genetic and neural complexity in schizophrenia. Nat Genet. doi:10.1038/ng.2446

    Google Scholar 

  123. Feng J, Schroer R, Yan J, Song W, Yang C, Bockholt A, Cook EH Jr, Skinner C, Schwartz CE, Sommer SS (2006) High frequency of neurexin 1beta signal peptide structural variants in patients with autism. Neurosci Lett 409(1):10–13. doi:10.1016/j.neulet.2006.08.017

    Article  PubMed  CAS  Google Scholar 

  124. Laumonnier F, Bonnet-Brilhault F, Gomot M, Blanc R, David A, Moizard MP, Raynaud M, Ronce N, Lemonnier E, Calvas P, Laudier B, Chelly J, Fryns JP, Ropers HH, Hamel BC, Andres C, Barthelemy C, Moraine C, Briault S (2004) X-linked mental retardation and autism are associated with a mutation in the NLGN4 gene, a member of the neuroligin family. Am J Hum Genet 74(3):552–557. doi:10.1086/382137

    Article  PubMed  CAS  Google Scholar 

  125. Yan J, Noltner K, Feng J, Li W, Schroer R, Skinner C, Zeng W, Schwartz CE, Sommer SS (2008) Neurexin 1alpha structural variants associated with autism. Neurosci Lett 438(3):368–370. doi:10.1016/j.neulet.2008.04.074

    Article  PubMed  CAS  Google Scholar 

  126. Vincent JB, Kolozsvari D, Roberts WS, Bolton PF, Gurling HM, Scherer SW (2004) Mutation screening of X-chromosomal neuroligin genes: no mutations in 196 autism probands. American journal of medical genetics Part B, Neuropsychiatric genetics : the official publication of the International Society of Psychiatric Genetics 129B(1):82–84. doi:10.1002/ajmg.b.30069

  127. Yan J, Oliveira G, Coutinho A, Yang C, Feng J, Katz C, Sram J, Bockholt A, Jones IR, Craddock N, Cook EH Jr, Vicente A, Sommer SS (2005) Analysis of the neuroligin 3 and 4 genes in autism and other neuropsychiatric patients. Mol Psychiatry 10(4):329–332. doi:10.1038/sj.mp.4001629

    Article  PubMed  CAS  Google Scholar 

  128. Ching MS, Shen Y, Tan WH, Jeste SS, Morrow EM, Chen X, Mukaddes NM, Yoo SY, Hanson E, Hundley R, Austin C, Becker RE, Berry GT, Driscoll K, Engle EC, Friedman S, Gusella JF, Hisama FM, Irons MB, Lafiosca T, LeClair E, Miller DT, Neessen M, Picker JD, Rappaport L, Rooney CM, Sarco DP, Stoler JM, Walsh CA, Wolff RR, Zhang T, Nasir RH, Wu BL (2010) Deletions of NRXN1 (neurexin-1) predispose to a wide spectrum of developmental disorders. American journal of medical genetics Part B, Neuropsychiatric genetics : the official publication of the International Society of Psychiatric Genetics 153B(4):937–947. doi:10.1002/ajmg.b.31063

  129. Schaaf CP, Boone PM, Sampath S, Williams C, Bader PI, Mueller JM, Shchelochkov OA, Brown CW, Crawford HP, Phalen JA, Tartaglia NR, Evans P, Campbell WM, Chun-Hui Tsai A, Parsley L, Grayson SW, Scheuerle A, Luzzi CD, Thomas SK, Eng PA, Kang SH, Patel A, Stankiewicz P, Cheung SW (2012) Phenotypic spectrum and genotype-phenotype correlations of NRXN1 exon deletions. Eur J Hum Genet EJHG. doi:10.1038/ejhg.2012.95

  130. Ylisaukko-oja T, Rehnstrom K, Auranen M, Vanhala R, Alen R, Kempas E, Ellonen P, Turunen JA, Makkonen I, Riikonen R, Nieminen-von Wendt T, von Wendt L, Peltonen L, Jarvela I (2005) Analysis of four neuroligin genes as candidates for autism. Eur J Hum Genet EJHG 13(12):1285–1292. doi:10.1038/sj.ejhg.5201474

    Article  CAS  Google Scholar 

  131. Gauthier J, Bonnel A, St-Onge J, Karemera L, Laurent S, Mottron L, Fombonne E, Joober R, Rouleau GA (2005) NLGN3/NLGN4 gene mutations are not responsible for autism in the Quebec population. American journal of medical genetics Part B, Neuropsychiatric genetics : the official publication of the International Society of Psychiatric Genetics 132B(1):74–75. doi:10.1002/ajmg.b.30066

  132. Gauthier J, Siddiqui TJ, Huashan P, Yokomaku D, Hamdan FF, Champagne N, Lapointe M, Spiegelman D, Noreau A, Lafreniere RG, Fathalli F, Joober R, Krebs MO, DeLisi LE, Mottron L, Fombonne E, Michaud JL, Drapeau P, Carbonetto S, Craig AM, Rouleau GA (2011) Truncating mutations in NRXN2 and NRXN1 in autism spectrum disorders and schizophrenia. Hum Genet 130(4):563–573. doi:10.1007/s00439-011-0975-z

    Article  PubMed  CAS  Google Scholar 

  133. Talebizadeh Z, Lam DY, Theodoro MF, Bittel DC, Lushington GH, Butler MG (2006) Novel splice isoforms for NLGN3 and NLGN4 with possible implications in autism. J Med Genet 43(5):e21

    Article  PubMed  CAS  Google Scholar 

  134. Blasi F, Bacchelli E, Pesaresi G, Carone S, Bailey AJ, Maestrini E (2006) Absence of coding mutations in the X-linked genes neuroligin 3 and neuroligin 4 in individuals with autism from the IMGSAC collection. American journal of medical genetics Part B, Neuropsychiatric genetics: the official publication of the International Society of Psychiatric Genetics 141B(3):220–221. doi:10.1002/ajmg.b.30287

  135. Liu Y, Hu Z, Xun G, Peng Y, Lu L, Xu X, Xiong Z, Xia L, Liu D, Li W, Zhao J, Xia K (2012) Mutation analysis of the NRXN1 gene in a Chinese autism cohort. J Psychiatr Res 46(5):630–634. doi:10.1016/j.jpsychires.2011.10.015

    Article  PubMed  Google Scholar 

  136. Comoletti D, Grishaev A, Whitten AE, Tsigelny I, Taylor P, Trewhella J (2007) Synaptic arrangement of the neuroligin/beta-neurexin complex revealed by X-ray and neutron scattering. Structure 15(6):693–705. doi:10.1016/j.str.2007.04.010

    Article  PubMed  CAS  Google Scholar 

  137. Lawson-Yuen A, Saldivar JS, Sommer S, Picker J (2008) Familial deletion within NLGN4 associated with autism and Tourette syndrome. Eur J Hum Genet EJHG 16(5):614–618. doi:10.1038/sj.ejhg.5202006

    Article  CAS  Google Scholar 

  138. Vaags AK, Lionel AC, Sato D, Goodenberger M, Stein QP, Curran S, Ogilvie C, Ahn JW, Drmic I, Senman L, Chrysler C, Thompson A, Russell C, Prasad A, Walker S, Pinto D, Marshall CR, Stavropoulos DJ, Zwaigenbaum L, Fernandez BA, Fombonne E, Bolton PF, Collier DA, Hodge JC, Roberts W, Szatmari P, Scherer SW (2012) Rare deletions at the neurexin 3 locus in autism spectrum disorder. Am J Hum Genet 90(1):133–141. doi:10.1016/j.ajhg.2011.11.025

    Article  PubMed  CAS  Google Scholar 

  139. Daoud H, Bonnet-Brilhault F, Vedrine S, Demattei MV, Vourc’h P, Bayou N, Andres CR, Barthelemy C, Laumonnier F, Briault S (2009) Autism and nonsyndromic mental retardation associated with a de novo mutation in the NLGN4X gene promoter causing an increased expression level. Biol Psychiatry 66(10):906–910. doi:10.1016/j.biopsych.2009.05.008

    Article  PubMed  CAS  Google Scholar 

  140. Pampanos A, Volaki K, Kanavakis E, Papandreou O, Youroukos S, Thomaidis L, Karkelis S, Tzetis M, Kitsiou-Tzeli S (2009) A substitution involving the NLGN4 gene associated with autistic behavior in the Greek population. Genet Test Mol Biomarkers 13(5):611–615. doi:10.1089/gtmb.2009.0005

    Article  PubMed  CAS  Google Scholar 

  141. Camacho-Garcia RJ, Planelles MI, Margalef M, Pecero ML, Martinez-Leal R, Aguilera F, Vilella E, Martinez-Mir A, Scholl FG (2012) Mutations affecting synaptic levels of neurexin-1beta in autism and mental retardation. Neurobiol Dis 47(1):135–143. doi:10.1016/j.nbd.2012.03.031

    Article  PubMed  CAS  Google Scholar 

  142. Zhang C, Milunsky JM, Newton S, Ko J, Zhao G, Maher TA, Tager-Flusberg H, Bolliger MF, Carter AS, Boucard AA, Powell CM, Sudhof TC (2009) A neuroligin-4 missense mutation associated with autism impairs neuroligin-4 folding and endoplasmic reticulum export. J Neurosci 29(35):10843–10854. doi:10.1523/JNEUROSCI.1248-09.2009

    Article  PubMed  CAS  Google Scholar 

  143. Gutierrez RC, Hung J, Zhang Y, Kertesz AC, Espina FJ, Colicos MA (2009) Altered synchrony and connectivity in neuronal networks expressing an autism-related mutation of neuroligin 3. Neuroscience 162(1):208–221. doi:10.1016/j.neuroscience.2009.04.062

    Article  PubMed  CAS  Google Scholar 

  144. Yasuda Y, Hashimoto R, Yamamori H, Ohi K, Fukumoto M, Umeda-Yano S, Mohri I, Ito A, Taniike M, Takeda M (2011) Gene expression analysis in lymphoblasts derived from patients with autism spectrum disorder. Mol Autism 2(1):9. doi:10.1186/2040-2392-2-9

    Article  PubMed  CAS  Google Scholar 

  145. Yanagi K, Kaname T, Wakui K, Hashimoto O, Fukushima Y, Naritomi K (2012) Identification of four novel synonymous substitutions in the X-linked genes neuroligin 3 and Neuroligin 4X in Japanese patients with autistic spectrum disorder. Autism Res Treat 2012:724072. doi:10.1155/2012/724072

    PubMed  Google Scholar 

  146. Steinberg KM, Ramachandran D, Patel V, Shetty AC, Cutler DJ, Zwick ME (2012) Identification of rare X-linked neuroligin variants by massively parallel sequencing in males with autism spectrum disorder. Mol Autism 3(1):8. doi:10.1186/2040-2392-3-8

    Article  PubMed  CAS  Google Scholar 

  147. Rujescu D, Ingason A, Cichon S, Pietilainen OP, Barnes MR, Toulopoulou T, Picchioni M, Vassos E, Ettinger U, Bramon E, Murray R, Ruggeri M, Tosato S, Bonetto C, Steinberg S, Sigurdsson E, Sigmundsson T, Petursson H, Gylfason A, Olason PI, Hardarsson G, Jonsdottir GA, Gustafsson O, Fossdal R, Giegling I, Moller HJ, Hartmann AM, Hoffmann P, Crombie C, Fraser G, Walker N, Lonnqvist J, Suvisaari J, Tuulio-Henriksson A, Djurovic S, Melle I, Andreassen OA, Hansen T, Werge T, Kiemeney LA, Franke B, Veltman J, Buizer-Voskamp JE, Sabatti C, Ophoff RA, Rietschel M, Nothen MM, Stefansson K, Peltonen L, St Clair D, Stefansson H, Collier DA (2009) Disruption of the neurexin 1 gene is associated with schizophrenia. Hum Mol Genet 18(5):988–996. doi:10.1093/hmg/ddn351

    PubMed  CAS  Google Scholar 

  148. Sand P, Langguth B, Hajak G, Perna M, Prikryl R, Kucerova H, Ceskova E, Kick C, Stoertebecker P, Eichhammer P (2006) Screening for Neuroligin 4 (NLGN4) truncating and transmembrane domain mutations in schizophrenia. Schizophr Res 82(2–3):277–278. doi:10.1016/j.schres.2005.11.003

    Article  PubMed  CAS  Google Scholar 

  149. Novak G, Boukhadra J, Shaikh SA, Kennedy JL, Le Foll B (2009) Association of a polymorphism in the NRXN3 gene with the degree of smoking in schizophrenia: a preliminary study. The world journal of biological psychiatry: the official journal of the World Federation of Societies of Biological Psychiatry 10 (4 Pt 3):929–935. doi:10.1080/15622970903079499

  150. Ikeda M, Aleksic B, Kirov G, Kinoshita Y, Yamanouchi Y, Kitajima T, Kawashima K, Okochi T, Kishi T, Zaharieva I, Owen MJ, O’Donovan MC, Ozaki N, Iwata N (2010) Copy number variation in schizophrenia in the Japanese population. Biol Psychiatry 67(3):283–286. doi:10.1016/j.biopsych.2009.08.034

    Article  PubMed  Google Scholar 

  151. Yue W, Yang Y, Zhang Y, Lu T, Hu X, Wang L, Ruan Y, Lv L, Zhang D (2011) A case-control association study of NRXN1 polymorphisms with schizophrenia in Chinese Han population. Behav Brain Funct BBF 7:7. doi:10.1186/1744-9081-7-7

    Article  CAS  Google Scholar 

  152. Sun C, Cheng MC, Qin R, Liao DL, Chen TT, Koong FJ, Chen G, Chen CH (2011) Identification and functional characterization of rare mutations of the neuroligin-2 gene (NLGN2) associated with schizophrenia. Hum Mol Genet 20(15):3042–3051. doi:10.1093/hmg/ddr208

    Article  PubMed  CAS  Google Scholar 

  153. Mozhui K, Wang X, Chen J, Mulligan MK, Li Z, Ingles J, Chen X, Lu L, Williams RW (2011) Genetic regulation of Nrxn1 [corrected] expression: an integrative cross-species analysis of schizophrenia candidate genes. Transl Psychiatry 1:e25. doi:10.1038/tp.2011.24

    PubMed  CAS  Google Scholar 

  154. Levinson DF, Shi J, Wang K, Oh S, Riley B, Pulver AE, Wildenauer DB, Laurent C, Mowry BJ, Gejman PV, Owen MJ, Kendler KS, Nestadt G, Schwab SG, Mallet J, Nertney D, Sanders AR, Williams NM, Wormley B, Lasseter VK, Albus M, Godard-Bauche S, Alexander M, Duan J, O’Donovan MC, Walsh D, O’Neill A, Papadimitriou GN, Dikeos D, Maier W, Lerer B, Campion D, Cohen D, Jay M, Fanous A, Eichhammer P, Silverman JM, Norton N, Zhang N, Hakonarson H, Gao C, Citri A, Hansen M, Ripke S, Dudbridge F, Holmans PA (2012) Genome-wide association study of multiplex schizophrenia pedigrees. Am J Psychiatry 169(9):963–973. doi:10.1176/appi.ajp.2012.11091423

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

S. Owczarek thanks the Lundbeck Foundation for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylwia Owczarek.

Additional information

Special Issue: In Honor of Elisabeth Bock.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bang, M.L., Owczarek, S. A Matter of Balance: Role of Neurexin and Neuroligin at the Synapse. Neurochem Res 38, 1174–1189 (2013). https://doi.org/10.1007/s11064-013-1029-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-013-1029-9

Keywords

Navigation