Skip to main content
Log in

Glutamate Induces Glutathione Efflux Mediated by Glutamate/Aspartate Transporter in Retinal Cell Cultures

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

This study was undertaken in order to characterize the role of the glutamate/aspartate transporter (GLAST) in the glutathione (GSH) efflux induced by glutamate. Our results demonstrated that retinal cell cultures exhibit two mechanisms of GSH release, one Na+-independent and other Na+-dependent. Glutamate and aspartate induced GSH efflux only in presence of Na+. Treatment with PCD (L-trans-Pyrrolidine-2,4-dicarboxylate), a transportable glutamate uptake blocker, increased GSH release indicating that GSH can be carried by glutamate transporters in retinal cell cultures. Added to this, treatment with zinc ion cultures, a recognized inhibitor of GLAST blocked GSH efflux evoked by glutamate. Treatment with NMDA antagonist (MK-801) did not have any effect on the GSH release induced by glutamate. These results suggest that glutamate induces GLAST-mediated release of GSH from retinal cell cultures and this could represent an important mechanism of cellular protection against glutamate toxicity in the CNS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BSA:

Bovine serum albumin

DMEM:

Dulbecco’s modified Eagle’s medium

DTNB:

5,5,8-dithiobis-2-nitrobenzoic acid

FBS:

Fetal bovine serum

GLAST:

Glutamate-aspartate transporter

MK-801:

(5R,2S)-(1)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate

PDC:

L-trans-Pyrrolidine-2,4-dicarboxylate

TNB:

Nitrobenzoic acid

References

  1. Otori Y, Shimada S, Tanaka K et al (1994) Marked increase in glutamate-aspartate transporter (GLAST/GluT-1) mRNA following transient retinal ischemia. Brain Res Mol Brain Res 27:310–314

    Article  CAS  PubMed  Google Scholar 

  2. Derouiche A, Rauen T (1995) Coincidence of L-glutamate/L-aspartate transporter (GLAST) and glutamine synthetase (GS) immunoreactions in retinal glia: evidence for coupling of GLAST and GS in transmitter clearance. J Neurosci Res 42:131–143

    Article  CAS  PubMed  Google Scholar 

  3. Rauen T, Rothstein JD, Wässle H (1996) Differential expression of three glutamate transporter subtypes in the rat retina. Cell Tissue Res 286:325–336

    Article  CAS  PubMed  Google Scholar 

  4. Lehre KP, Davanger S, Danbolt NC (1997) Localization of the glutamate transporter protein GLAST in rat retina. Brain Res 744:129–137

    Article  CAS  PubMed  Google Scholar 

  5. Rauen T, Taylor WR, Kuhlbrodt K et al (1998) High-affinity glutamate transporters in the rat retina: a major role of the glial glutamate transporter GLAST-1 in transmitter clearance. Cell Tissue Res 291:19–31

    Article  CAS  PubMed  Google Scholar 

  6. Rauen T (2000) Diversity of glutamate transporter expression and function in the mammalian retina. Amino Acids 19:53–62

    Article  CAS  PubMed  Google Scholar 

  7. Bouvier M, Miller BA, Szatkowski M et al (1991) Electrogenic uptake of sulphur-containing analogues of glutamate and aspartate by Müller cells from the salamander retina. J Physiol 444:441–457

    CAS  PubMed  Google Scholar 

  8. Handelman GJ, Dratz EA (1986) The role of antioxidants in the retina and retinal pigment epithelium and the nature of prooxidant induced damage. Adv Free Rad Biol Med 2:1–89

    Article  CAS  Google Scholar 

  9. Tanito M, Nishiyama A, Tanaka T et al (2002) Change of redox status and modulation by thiol replenishment in retinal photo-oxidative damage. Invest Ophthalmol Vis Sci 43:2392–2400

    PubMed  Google Scholar 

  10. Smythies JR (1997) Oxidative reactions and schizophrenia: a review-discussion. Schizophr Res 24:357–364

    Article  CAS  PubMed  Google Scholar 

  11. Jenner P (1998) Oxidative mechanisms in nigral cell death in Parkinson’s disease. Mov Disord 13:24–34

    PubMed  Google Scholar 

  12. Jenner P, Olanow CW (1998) Understanding cell death in Parkinson’s disease. Ann Neurol 44:72–84

    Google Scholar 

  13. Jellinger KA (1999) The role of iron in neurodegeneration: prospects for pharmacotherapy of Parkinson’s disease. Drugs Aging 14:115–140

    Article  CAS  PubMed  Google Scholar 

  14. Yudkoff M, Pleasure D, Cregar L et al (1990) Glutathione turnover in cultured astrocytes: studies with [15 N]glutamate. J Neurochem 55:137–145

    Article  CAS  PubMed  Google Scholar 

  15. Sagara J, Makino N, Bannai S (1996) Glutathione efflux from cultured astrocytes. J Neurochem 66:1876–1881

    Article  CAS  PubMed  Google Scholar 

  16. Dringen R, Kranich O, Hamprecht B (1997) The gamma-glutamyl transpeptidase inhibitor acivicin preserves glutathione released by astroglial cells in culture. Neurochem Res 22:727–733

    Article  CAS  PubMed  Google Scholar 

  17. Hirrlinger J, Schulz JB, Dringen R (2002) Glutathione release from cultured brain cells: multidrug resistance protein 1 mediates the release of GSH from rat astroglial cells. J Neurosci Res 69:318–326

    Article  CAS  PubMed  Google Scholar 

  18. Stewart VC, Stone R, Gegg ME et al (2002) Preservation of extracellular glutathione by an astrocyte derived factor with properties comparable to extracellular superoxide dismutase. J Neurochem 83:984–991

    Article  CAS  PubMed  Google Scholar 

  19. Frade J, Pope S, Schmidt M et al (2008) Glutamate induces release of glutathione from cultured rat astrocytesa possible neuroprotective mechanism? J Neurochem 105:1144–1152

    Article  CAS  PubMed  Google Scholar 

  20. Kubrusly RCC, de Mello MC, de Mello FG (1998) Aspartate as a selective NMDA receptor agonist in cultured cells from the avian retina. Neurochem Int 32:47–52

    Article  CAS  PubMed  Google Scholar 

  21. de Almeida OMMS, Gardino PF, Santos NEL et al (2002) Opposite roles of GABA and excitatory amino acids on the control of GAD expression in cultured retina cells Brain. Research 925:89–99

    Google Scholar 

  22. Anderson ME (1985) Determination of glutathione and glutathione disulfide in biological samples. Methods Enzymol 113:548–555

    Article  CAS  PubMed  Google Scholar 

  23. Lowry OH, Rosebrough NJ, Farr AL et al (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  24. Hayes KC (1974) Retinal degeneration in monkeys induced by deficiencies of vitamin E or A. Invest Ophthalmol 13:499–510

    CAS  PubMed  Google Scholar 

  25. Organisciak DT, Wang HM, Li ZY et al (1985) The protective effect of ascorbate in retinal light damage of rats. Invest Ophthalmol 26:1580–1588

    CAS  Google Scholar 

  26. Sternberg P Jr, Lopez PF, Capone A Jr et al (1992) Management of threshold retinopathy of prematurity. Retina 12:60–63

    Article  Google Scholar 

  27. Winkler BS, Giblin FJ (1983) Glutathione oxidation in retina: effects on biochemical and electrical activities. Exp Eye Res 36:287–297

    Article  CAS  PubMed  Google Scholar 

  28. Lash LH, Jones DP (1984) Renal glutathione transport. Characteristics of the sodium-dependent system in the basal-lateral membrane. J Biol Chem 259:14508–14514

    CAS  PubMed  Google Scholar 

  29. Hagen TM, Jones DP (1987) Transepithelial transport of glutathione in vascularly perfused small intestine of rat. Am J Physiol 252:607–613

    Google Scholar 

  30. Kannan R, Kuhlenkamp JF, Jeandidier E et al (1990) Evidence for carrier-mediated transport of glutathione across the blood-brain barrier in the rat. J Clin Invest 85:2009–2013

    Article  CAS  PubMed  Google Scholar 

  31. Ballatori N, Dutczak WJ (1994) Identification and characterization of high and low affinity transport systems for reduced glutathione in liver cell canalicular membranes. J Biol Chem 269:19731–19737

    CAS  PubMed  Google Scholar 

  32. Kannan R, Mittur A, Bao Y et al (1999) GSH transport in immortalized mouse brain endothelial cells: evidence for apical localization of a sodium-dependent GSH transporter. J Neurochem 73:390–399

    Article  CAS  PubMed  Google Scholar 

  33. Kannan R, Tang D, Hu J et al (2001) Glutathione transport in human retinal pigment epithelial (HRPE) cells: apical localization of sodium-dependent gsh transport. Exp Eye Res 72:661–666

    Article  CAS  PubMed  Google Scholar 

  34. McBean GJ (2002) Cerebral cystine uptake: a tale of two transporters. Trends Pharmacol Sci 23:299–302

    Article  CAS  PubMed  Google Scholar 

  35. Wang XF, Cynader MS (2000) Astrocytes provide cysteine to neurons by releasing glutathione. J Neurochem 74:1434–1442

    Article  CAS  PubMed  Google Scholar 

  36. Dringen R, Hirrlinger J (2003) Glutathione pathways in the brain. J Biol Chem 384:505–516

    Article  CAS  Google Scholar 

  37. Bridges RJ, Stanley MS, Anderson MW et al (1991) Conformationally Defined Neurotransmitter Analogues. Selective Inhibition of Glutamate Uptake by One Pyrrolidine-2, 4-dicarboxylate Diastereomer. J Med Chem 34:717–725

    Article  CAS  PubMed  Google Scholar 

  38. Ohta K, Nomura T, Kanno T et al (2002) L-trans-PDC enhances hippocampal neuronal activity by stimulating glial glutamate release independently of blocking transporters. Biochem Biophys Res Commun 295:376–381

    Article  CAS  PubMed  Google Scholar 

  39. Shin J-W, Nguyen KTD POWDV et al (2009) Distribution of Glutamate Transporter GLAST in Membranes of Cultured Astrocytes in the Presence of Glutamate Transport Substrates and ATP. Neurochem Res 34:1758–1766

    Article  CAS  PubMed  Google Scholar 

  40. Bringmann A, Pannicke T, Biedermann B et al (2009) Role of retinal glial cells in neurotransmitter uptake and metabolism. Neurochem Int 54:143–160

    Article  CAS  PubMed  Google Scholar 

  41. Spiridon M, Kamm D, Billups B et al (1998) Modulation by zinc of the glutamate transporters in glial cells and cones isolated from the tiger salamander retina. J Physiol 506:363–376

    Article  CAS  PubMed  Google Scholar 

  42. Vandenberg RJ, Mitrovic AD, Johnston GA (1998) Molecular basis for differential inhibition of glutamate transporter subtypes by zinc ions. Mol Pharmacol 54:189–196

    CAS  PubMed  Google Scholar 

  43. Gether U, Andersen PH, Larsson OM et al (2006) Neurotransmitter transporters: molecular function of important drug targets. Trends Pharmacol Sci 27:375–383

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Makarú LTDA for supplying chicken eggs used in this work. This project was financially supported by CNPq and FAPESPA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Herculano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garcia, T.B., Oliveira, K.R.M., do Nascimento, J.L.M. et al. Glutamate Induces Glutathione Efflux Mediated by Glutamate/Aspartate Transporter in Retinal Cell Cultures. Neurochem Res 36, 412–418 (2011). https://doi.org/10.1007/s11064-010-0356-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-010-0356-3

Keywords

Navigation