Skip to main content

Excitatory Amino Acid Transporters, Xc Antiporter, γ-Glutamyl Transpeptidase, Glutamine Synthetase, and Glutathione in Human Corneal Epithelial Cells

  • Chapter
  • First Online:
Studies on the Cornea and Lens

Abstract

Glutamate (Glu) and cystine (Cys) modulating enzymes and transport systems were identified in human corneal epithelial cells and their importance to maintaining glutathione (GSH; potent antioxidant tripeptide of Glu, Cys, and glycine) investigated. Glu, Na-dependent excitatory amino acid transporters (EAAT), Xc antiporter, γ-glutamyltranspeptidase (GGT; cleaves GSH) and glutamine synthetase (GS; amidates Glu to form glutamine) were identified by immunofluorescent antibody analysis, characterized by inhibitor sensitivity and their importance to GSH levels assessed pharmacologically. Immunoreactive Glu was detected in the cytoplasm of most cells, but was highly concentrated in the mitochondria-rich cytoplasm. All five EAATs and the Xc antiporter light chain (xCT) were detected, but cells predominantly expressed EAAT1, 2, 3, and Xc antiporter. Uptake of radiolabeled d-Asp was Na-dependent and inhibited by Glu/Asp analogs consistent with EAAT1 and EAAT3 activity. l-Cys uptake was Na+-independent consistent with Xc antiporter activity. Extrinsic membrane-bound GGT was concentrated between cells and GS was detected in perinuclear cytoplasm of most cells. Inhibition of EAAT, Xc antiporter, GGT, GS and GSH synthesis reduced GSH by 21 %, 24 %, 19 %, 32.7 %, and 54 %, respectively. The results support the dependence of GSH on Glu and Cys uptake by EAAT and Xc exchanger activity, extracellular Glu and Cys generation by GGT and regulation of intracellular Glu by GS. The results suggest that Glu and Cys transport systems, GGT and GS activities maintain physiological Glu, Cys, and GSH levels and protect human cornea epithelial cells against oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Cys:

Cystine

EAAT:

Excitatory amino acid transporter

GGT:

Gamma–glutamyl transpeptidase

Gln:

Glutamine

Glu:

Glutamate

GS:

Glutamine synthetase

HCEC:

Human conjunctival epithelial cells

NAC:

N-acetylcysteine

ROS:

Reactive oxygen species

xCT:

Xc-exchanger C-terminal light chain

References

  1. Green K. Free radicals and aging of anterior segment tissues of the eye: a hypothesis. Ophthalmic Res. 1995;27 Suppl 1:143–9.

    Article  CAS  PubMed  Google Scholar 

  2. Buddi R, Lin B, Atilano SR, Zorapapel NC, Kenney MC, Brown DJ. Evidence of oxidative stress in human corneal diseases. J Histochem Cytochem. 2002;50:341–51.

    Article  CAS  PubMed  Google Scholar 

  3. Ganea E, Harding JJ. Glutathione-related enzymes and the eye. Curr Eye Res. 2006;31:1–11.

    Article  CAS  PubMed  Google Scholar 

  4. Shoham A, Hadziahmetovic M, Dunaief JL, Mydlarski MB, Schipper HM. Oxidative stress in diseases of the human cornea. Free Radic Biol Med. 2008;45:1047–55.

    Article  CAS  PubMed  Google Scholar 

  5. Whikehart DR. Total oxidized glutathione in bovine corneal epithelium and endothelium. Exp Eye Res. 1975;25:89–92.

    Article  Google Scholar 

  6. Li B, Lee MS, Lee RS, Donaldson PJ, Lim JC. Characterization of glutathione uptake, synthesis, and efflux pathways in the epithelium and endothelium of the rat cornea. Cornea. 2012;31:1304–12.

    Article  PubMed  Google Scholar 

  7. Whikehart DR, Edelhauser HF. Glutathione in rabbit corneal endothelia: the effects of selected perfusion fluids. Invest Ophthalmol Vis Sci. 1978;17:455–64.

    CAS  PubMed  Google Scholar 

  8. Anderson EL, Wright DD. The roles of glutathione reductase and γ-glutamyl transpeptidase in corneal transendothelial fluid transport mediated by oxidized glutathione and glucose. Exp Eye Res. 1982;35:11–9.

    Article  CAS  PubMed  Google Scholar 

  9. Riley MV. A role for glutathione and glutathione reductase in control of corneal hydration. Exp Eye Res. 1984;39:751–8.

    Article  CAS  PubMed  Google Scholar 

  10. Araie M, Shirasawa E, Hikita M. Effect of oxidized glutathione on the barrier function of the corneal endothelium. Invest Ophthalmol Vis Sci. 1988;29:1884–7.

    CAS  PubMed  Google Scholar 

  11. Spector A. Oxidation and aspects of ocular pathology. CLAO J. 1990;16(1 Suppl):S8–10.

    CAS  PubMed  Google Scholar 

  12. Nakamura M, Nakano T, Hikida M. Effects of oxidized glutathione and reduced glutathione on the barrier function of the corneal endothelium. Cornea. 1994;13:493–5.

    Article  CAS  PubMed  Google Scholar 

  13. Redmond P, Burnham JM, Langford MP, Misra RP, Redens TB, Texada DE. Age-related decrease in human corneal γ-glutamyltranspeptidase activity. Cornea. 2013;32:e121–6.

    Article  PubMed  Google Scholar 

  14. Burnham JM, Sakhalkar M, Langford MP, Liang C, Redens TB, Jain SK. Diabetic and non-diabetic human cornea and tear γ-glutamyl transpeptidase activity. Clin Ophthalmol. 2013;7:99–107.

    PubMed Central  PubMed  Google Scholar 

  15. Li B, Li L, Donaldson PJ, Lim JC. Dynamic regulation of GSH synthesis and uptake pathways in the rat lens epithelium. Exp Eye Res. 2010;90:300–7.

    Article  CAS  PubMed  Google Scholar 

  16. Lim JC, Lam L, Li B, Donaldson PJ. Molecular identification and cellular localization of a potential transport system involved in cystine/cysteine uptake in human lenses. Exp Eye Res. 2013;116:219–26.

    Article  CAS  PubMed  Google Scholar 

  17. Langford MP, Gosslee JM, Misra RP, Liang C, Redens TB, Welbourne TC. Apical accumulation of glutamate in GLAST-1, glutamine synthetase positive ciliary body non-pigmented epithelial cells. Clin Ophthalmol. 2007;1:43–53.

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Hu RG, Lim JC, Kalloniatis M, Donaldson PJ. Cellular localization of glutamate and glutamine metabolism and transport pathways in the rat ciliary epithelium. Invest Ophthalmol Vis Sci. 2011;52:3345–53.

    Article  CAS  PubMed  Google Scholar 

  19. Li B, Umapathy A, Tran LU, Donaldson PJ, Lim JC. Molecular identification and cellular localisation of GSH synthesis, uptake, efflux and degradation pathways in the rat ciliary body. Histochem Cell Biol. 2013;139:559–71.

    Article  CAS  PubMed  Google Scholar 

  20. Langford MP, Redmond P, Chanis R, Misra RP, Redens TB. Glutamate, excitatory amino acid transporters, Xc antiporter, glutamine synthetase and γ-glutamyl transpeptidase in human corneal epithelium. Curr Eye Res. 2010;53:221–30.

    Google Scholar 

  21. Pan Z, Wang Z, Yang H, Zhang F, Reinach PS. TRPV1 activation is required for hypertonicity-stimulated inflammatory cytokine release in human corneal epithelial cells. Invest Ophthalmol Vis Sci. 2011;52:485–93.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Arriza JL, Fairman WA, Wadiche JI, Murdock GH, Kavanaugh MP, Amara S. Functional comparisons of three GLU transporter subtypes clone from human motor cortex. J Neurosci. 1994;14:5559–69.

    CAS  PubMed  Google Scholar 

  23. Tsai MJ, Chang YF, Schwarcz R, Brookes N. Characterization of L-alpha-aminoadipic acid transport in cultured rat astrocytes. Brain Res. 1996;741:166–73.

    Article  CAS  PubMed  Google Scholar 

  24. Waagepetersen HS, Shimamoto K, Schousbe A. Comparison of effects of dl-threo-beta-benzyloxyaspartate (dl-TBOA) and 1-trans-pyrrolidine-2,4-dicarboxylate (t-2,4-PDC) on uptake and release of [3H]d-aspartate in astrocytes and glutamatergic neurons. Neurochem Res. 2001;26:661–6.

    Article  CAS  PubMed  Google Scholar 

  25. Stole E, Smith TK, Manning JM, Meister A. Interaction of gamma-glutamyl transpeptidase with acivicin. J Biol Chem. 1994;269:21435–9.

    CAS  PubMed  Google Scholar 

  26. Reif-Lehrer L, Coghlin J. Conversion of glutamic acid to glutamine by retinal glutamine synthetase. Exp Eye Res. 1973;17:321–8.

    Article  CAS  PubMed  Google Scholar 

  27. Griffith OW. Mechanism of action, metabolism, and toxicity of buthionine sulfoximine and its higher homologs, potent inhibitors of glutathione synthesis. J Biol Chem. 1982;257:13704–12.

    CAS  PubMed  Google Scholar 

  28. Langford MP, Stanton GJ, Johnson HM. Biological effect of staphylococcal enterotoxin A on human peripheral lymphocytes. Infect Immun. 1978;22:68–78.

    Google Scholar 

  29. Castle JD, Cameron RS, Patterson PL, Ma AK. Identification of high molecular weight antigens structurally related to gamma-glutamyl transferase in epithelial tissues. J Membr Biol. 1985;87:13–26.

    Article  CAS  PubMed  Google Scholar 

  30. Kato S, Ishita S, Sugawara K, Mawatari K. Cystine/glutamate antiporter expression in retinal Müller glial cells: implications for DL-alpha-aminoadipate toxicity. Neuroscience. 1993;57:473–82.

    Article  CAS  PubMed  Google Scholar 

  31. Rahman I, Kode A, Biswas SK. Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method. Nat Protoc. 2006;1:3159–65.

    Article  CAS  PubMed  Google Scholar 

  32. Sato H, Tamba M, Ishii T, Bannai S. Cloning and expression of a plasma membrane cystine/glutamate exchange transporter composed of two distinct proteins. J Biol Chem. 1999;274:11455–8.

    Article  CAS  PubMed  Google Scholar 

  33. Reichelt W, Stabel-Brown J, Pannicke T, Weichert H, Heinemann U. The glutathione level of retinal Müller glial cells is dependent on high-affinity sodium-dependent uptake of glutamate. Neuroscience. 1997;77:1213–24.

    Article  CAS  PubMed  Google Scholar 

  34. Agostinho P, Duarte CB, Oliveira CR. Impairment of excitatory amino acid transporter activity by oxidative stress conditions in retinal cells: effect of antioxidants. FASEB J. 1997;11:154–63.

    CAS  PubMed  Google Scholar 

  35. Zerangue N, Kavanaugh MP. Interaction of l-cysteine with a human excitatory amino acid transporter. J Physiol. 1996;493:419–23.

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Hayes D, Wiessner M, Rauen T, McBean GJ. Transport of l-[14C]cystine and l-[14C]cysteine by subtypes of high-affinity glutamate transporters over-expressed in HEK cells. Neurochem Int. 2005;46:585–94.

    Article  CAS  PubMed  Google Scholar 

  37. Aoyama K, Suh SW, Hamby AM, Liu J, Chan WY, Chen Y, Swanson RA. Neuronal glutathione deficiency and age-dependent neurodegeneration in the EAAC1 deficient mouse. Nat Neurosci. 2006;9:119–26.

    Article  CAS  PubMed  Google Scholar 

  38. Cao L, Li L, Zuo Z. N-acetylcysteine reverses existing cognitive impairment and increased oxidative stress in glutamate transporter type 3 deficient mice. Neuroscience. 2012;220:85–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Berman AE, Chan YY, Brennan AM, Reyes RC, Adler BL, Suh SW, Kauppinen TM, Edling Y, Swanson RA. A-acetylcysteine prevents loss of dopaminergic neurons in the EAAC1−/− mouse. Ann Neurol. 2011;69:509–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Bridges RJ, Natale NR, Patel SA. System xc cystine/glutamate antiporter: an update on molecular pharmacology and roles within the CNS. Br J Pharmacol. 2012;165:20–34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Mysona B, Dun Y, Duplantier J, Ganapathy V, Smith SB. Effects of hyperglycemia and oxidative stress on the glutamate transporters GLAST and system xc in mouse retinal Müller glial cells. Cell Tissue Res. 2009;335:477–88.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Lewerenz J, Klein M, Methner A. Cooperative action of glutamate transporters and cystine/glutamate antiporter system Xc protects from oxidative glutamate toxicity. J Neurochem. 2006;98:916–25.

    Article  CAS  PubMed  Google Scholar 

  43. Tan S, Schubert D, Maher P. Oxytosis: a novel form of programmed cell death. Curr Top Med Chem. 2001;1:497–506.

    Article  CAS  PubMed  Google Scholar 

  44. Dreyer EB, Zurakowski D, Schumer RA, Podos SM, Lipton SA. Elevated glutamate levels in the vitreous body of humans and monkeys with glaucoma. Arch Ophthalmol. 1996;114:299–305.

    Article  CAS  PubMed  Google Scholar 

  45. Li Q, Puro DG. Diabetes-induced dysfunction of the glutamate transporter in retinal Müller cells. Invest Ophthalmol Vis Sci. 2002;43:3109–16.

    PubMed  Google Scholar 

  46. Pulido JE, Pulido JS, Erie JC, Arroyo J, Bertram K, Lu MJ, Shippy SA. A role for excitatory amino acids in diabetic eye disease. Exp Diabetes Res. 2007;2007:36150.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Alves Mde C, Carvalheira JB, Módulo CM, Rocha EM. Tear film and ocular surface changes in diabetes mellitus. Arq Bras Oftalmol. 2008;71(6 Suppl):96–103.

    Article  PubMed  Google Scholar 

  48. Meister A, Tate SS. Glutathione and related gamma-glutamyl compounds: biosynthesis and utilization. Annu Rev Biochem. 1976;45:559–604.

    Article  CAS  PubMed  Google Scholar 

  49. Welbourne TC. Glutaminase-gamma-glutamyltransferase: subcellular localization and ammonia production in acidosis. Proc Soc Exp Biol Med. 1978;159:294–7.

    Article  CAS  PubMed  Google Scholar 

  50. Söderdahl T, Enoksson M, Lundberg M, Holmgren A, Ottersen OP, Orrenius S, Bolcsfoldi G, Cotgreave IA. Visualization of the compartmentalization of glutathione and protein-glutathione mixed disulfides in cultured cells. FASEB J. 2003;17:124–6.

    PubMed  Google Scholar 

  51. Hill KE, Von Hoff DD, Burk RF. Effect of inhibition of gamma-glutamyltranspeptidase by AT-125 (acivicin) on glutathione and cysteine levels in rat brain and plasma. Invest New Drugs. 1985;3:31–4.

    Article  CAS  PubMed  Google Scholar 

  52. Cotgreave IA, Schuppe-Koistinen I. A role for gamma-glutamyl transpeptidase in the transport of cystine into human endothelial cells: relationship to intracellular glutathione. Biochim Biophys Acta. 1994;1222:375–82.

    Article  CAS  PubMed  Google Scholar 

  53. Karp DR, Shimooku K, Lipsky PE. Expression of gamma-glutamyl transpeptidase protects ramos B cells from oxidation-induced cell death. J Biol Chem. 2001;276:3798–804.

    Article  CAS  PubMed  Google Scholar 

  54. Carlisle ML, King MR, Karp DR. Gamma-glutamyl transpeptidase activity alters the T cell response to oxidative stress and Fas-induced apoptosis. Int Immunol. 2003;15:17–27.

    Article  CAS  PubMed  Google Scholar 

  55. Chevez-Barrios P, Wiseman AL, Rajas E, Ching-nan O, Lieberman MW. Cataract development in γ-glutamyl transpeptidase-deficient mice. Exp Eye Res. 2000;71:575–82.

    Article  CAS  PubMed  Google Scholar 

  56. Izumi Y, Matsukawa M, Benz AM, Izumi M, Ishikawa M, Olney JW, Zorumski CF. Role of ammonia in reversal of glutamate-mediated Müller cell swelling in the rat retina. Glia. 2004;48:44–50.

    Article  PubMed  Google Scholar 

  57. Shaked I, Ben-Dror I, Vardimon L. Glutamine synthetase enhances the clearance of extracellular glutamate by the neural retina. J Neurochem. 2002;83:574–80.

    Article  CAS  PubMed  Google Scholar 

  58. Gorovits R, Avidan N, Avisar N, Shaked I, Vardimon L. Glutamine synthetase protects against neuronal degeneration in injured retinal tissue. Proc Natl Acad Sci U S A. 1997;94:7024–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Shimmura S, Tadano K, Tsubota K. UV dose-dependent caspase activation in a corneal epithelial cell line. Curr Eye Res. 2004;28:85–92.

    Article  CAS  PubMed  Google Scholar 

  60. Lewerenz J, Dargusch R, Maher P. Lactacidosis modulates glutathione metabolism and oxidative glutamate toxicity. J Neurochem. 2010;113:502–14.

    Article  CAS  PubMed  Google Scholar 

  61. Welbourne T, Nissim I. Regulation of mitochondrial glutamine/glutamate metabolism by glutamate transport: studies with 15N. Am J Physiol Cell Physiol. 2001;280:C1151–9.

    CAS  PubMed  Google Scholar 

  62. Gottlieb RA, Carreira RS. Autophagy in health and disease. 5. Mitophagy as a way of life. Am J Physiol Cell Physiol. 2010;299:C203–10.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Wang CH, Wu SB, Wu YT, Wei YH. Oxidative stress response elicited by mitochondrial dysfunction: implication in the pathophysiology of aging. Exp Biol Med (Maywood). 2013;238:450–60.

    Article  Google Scholar 

  64. Izzotti A, Saccà SC, Longobardi M, Cartiglia C. Sensitivity of ocular anterior chamber tissues to oxidative damage and its relevance to the pathogenesis of glaucoma. Invest Ophthalmol Vis Sci. 2009;50:5251–8.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Christopher Duggan for excellent technical support. The authors have no conflicts of interest. The authors acknowledge the support of the LSUHSC, Department of Ophthalmology Faculty Improvement Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marlyn P. Langford Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Langford, M.P., Redens, T.B., Texada, D.E. (2015). Excitatory Amino Acid Transporters, Xc Antiporter, γ-Glutamyl Transpeptidase, Glutamine Synthetase, and Glutathione in Human Corneal Epithelial Cells. In: Babizhayev, M., Li, DC., Kasus-Jacobi, A., Žorić, L., Alió, J. (eds) Studies on the Cornea and Lens. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1935-2_4

Download citation

Publish with us

Policies and ethics