Skip to main content
Log in

A Differential Proteomic Approach Reveals an Evolutionary Conserved Regulation of Nme Proteins by Fe65 in C. elegans and Mouse

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The function of the APP–Fe65 complex is still not definitively understood. To address this point we studied the phenotype of Fe65 (feh-1) ablation, which results in severe developmental defects in C. elegans, including embryonic and larval arrests. To shed light on the complex phenotype of embryonic arrest, we undertook a systematic approach, aiming at the definition of the altered proteomic profile of feh-1 null worms. We defined a panel of 27 regulated proteins, 16 of which actually participating to embryonic development processes in the nematode. Protein spots corresponding to the products of the F25H2.5 gene, the nematode orthologue of mammalian Nm23/Nme gene family members, were consistently up-regulated in feh-1 −/− embryos. We observed similar up-regulation of Nme1 and Nme2 genes, both at the transcript and the protein levels, in the brain of Fe65 knock-out mice, thus highlighting the occurrence of evolutionary conserved mechanisms of Nme expression in nematodes and mammals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297:353–356

    Article  PubMed  CAS  Google Scholar 

  2. Dominguez DI, Hartmann D, De Strooper B (2004) BACE1 and presenilin: two unusual aspartyl proteases involved in Alzheimer’s disease. Neurodegener Dis 1:168–174

    Article  PubMed  CAS  Google Scholar 

  3. Tanzi RE, Kovacs DM, Kim TW et al (1996) The gene defects responsible for familial Alzheimer’s disease. Neurobiol Dis 3:159–168

    Article  PubMed  CAS  Google Scholar 

  4. Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid beta-peptide. Nat Rev Mol Cell Biol 8:101–112

    Article  PubMed  CAS  Google Scholar 

  5. Saura CA, Choi SY, Beglopoulos V et al (2004) Loss of presenilin function causes impairments of memory and synaptic plasticity followed by age-dependent neurodegeneration. Neuron 42:23–36

    Article  PubMed  CAS  Google Scholar 

  6. Müller U, Cristina N, Li ZW et al (1994) Behavioral and anatomical deficits in mice homozygous for a modified beta-amyloid precursor protein gene. Cell 79:755–765

    Article  PubMed  Google Scholar 

  7. Herms J, Anliker B, Heber S et al (2004) Cortical dysplasia resembling human type 2 lissencephaly in mice lacking all three APP family members. EMBO J 23:4106–4115

    Article  PubMed  CAS  Google Scholar 

  8. Fiore F, Zambrano N, Minopoli G et al (1995) The regions of the Fe65 protein homologous to the phosphotyrosine interaction/phosphotyrosine binding domain of Shc bind the intracellular domain of the Alzheimer’s amyloid precursor protein. J Biol Chem 270:30853–30856

    Article  PubMed  CAS  Google Scholar 

  9. Borg JP, Ooi J, Levy E et al (1996) The phosphotyrosine interaction domains of X11 and FE65 bind to distinct sites on the YENPTY motif of amyloid precursor protein. Mol Cell Biol 16:6229–6241

    PubMed  CAS  Google Scholar 

  10. Guénette SY, Chen J, Jondro PD et al (1996) Association of a novel human FE65-like protein with the cytoplasmic domain of the beta-amyloid precursor protein. Proc Natl Acad Sci USA 93:10832–10837

    Article  PubMed  Google Scholar 

  11. Duilio A, Faraonio R, Minopoli G et al (1998) Fe65L2: a new member of the Fe65 protein family interacting with the intracellular domain of the Alzheimer’s beta-amyloid precursor protein. Biochem J 330:513–519

    PubMed  CAS  Google Scholar 

  12. Zambrano N, Buxbaum JD, Minopoli G et al (1997) Interaction of the phosphotyrosine interaction/phosphotyrosine binding-related domains of Fe65 with wild-type and mutant Alzheimer’s beta-amyloid precursor proteins. J Biol Chem 272:6399–6405

    Article  PubMed  CAS  Google Scholar 

  13. McLoughlin DM, Miller CC (2007) The FE65 proteins and Alzheimer’s disease. J Neurosci Res Sep 7 2007 [Epub ahead of print]

  14. Minopoli G, Stante M, Napolitano F et al (2007) Essential roles for Fe65, Alzheimer amyloid precursor-binding protein, in the cellular response to DNA damage. J Biol Chem 282:831–835

    Article  PubMed  CAS  Google Scholar 

  15. Wang B, Hu Q, Hearn MG et al (2004) Isoform-specific knockout of FE65 leads to impaired learning and memory. J Neurosci Res 75:12–24

    Article  PubMed  CAS  Google Scholar 

  16. Guénette S, Chang Y, Hiesberger T et al (2006) Essential roles for the FE65 amyloid precursor protein-interacting proteins in brain development. EMBO J 25:420–431

    Article  PubMed  Google Scholar 

  17. Zambrano N, Bimonte M, Arbucci S et al (2002) feh-1 and apl-1, the Caenorhabditis elegans orthologues of mammalian Fe65 and beta-amyloid precursor protein genes, are involved in the same pathway that controls nematode pharyngeal pumping. J Cell Sci 115:1411–1422

    PubMed  CAS  Google Scholar 

  18. Bimonte M, Gianni D, Allegra D et al (2004) Mutation of the feh-1 gene, the Caenorhabditis elegans orthologue of mammalian Fe65, decreases the expression of two acetylcholinesterase genes. Eur J Neurosci 20:1483–1488

    Article  PubMed  Google Scholar 

  19. Sulston JE, Hodgkin JG (1988) In: Wood WB (ed) Methods in the nematode Caenorhabditis elegans. Cold Spring Harbor University Press, Cold Spring Harbor, pp 587–606

    Google Scholar 

  20. Hresko MC, Schriefer LA, Shrimankar P et al (1999) Myotactin, a novel hypodermal protein involved in muscle-cell adhesion in Caenorhabditis elegans. J Cell Biol 146:659–672

    Article  PubMed  CAS  Google Scholar 

  21. Caratù G, Allegra D, Bimonte M et al (2007) Identification of the ligands of protein interaction domains through a functional approach. Mol Cell Proteomics 6:333–345

    PubMed  Google Scholar 

  22. Zhang W, Chait BT (2000) ProFound: an expert system for protein identification using mass spectrometric peptide mapping information. Anal Chem 72:2482–2489

    Article  PubMed  CAS  Google Scholar 

  23. Telese F, Bruni P, Donizetti A et al (2005) Transcription regulation by the adaptor protein Fe65 and the nucleosome assembly factor SET. EMBO Rep 6:77–82

    Article  PubMed  CAS  Google Scholar 

  24. Britton C, Murray L (2004) Cathepsin l protease (CPL-1) is essential for yolk processing during embryogenesis in Caenorhabditis elegans. J Cell Sci 117:5133–5143

    Article  PubMed  CAS  Google Scholar 

  25. Ma D, McCorkle JR, Kaetzel DM (2004) The metastasis suppressor NM23-H1 possesses 3′-5′ exonuclease activity. J Biol Chem 279:18073–18084

    Article  PubMed  CAS  Google Scholar 

  26. Fan Z, Beresford PJ, Oh DY et al (2003) Tumor suppressor NM23-H1 is a granzyme A-activated DNase during CTL-mediated apoptosis, and the nucleosome assembly protein SET is its inhibitor. Cell 112:659–672

    Article  PubMed  CAS  Google Scholar 

  27. Kaetzel DM, Zhang Q, Yang M et al (2006) Potential roles of 3′-5′ exonuclease activity of NM23-H1 in DNA repair and malignant progression. J Bioenerg Biomembr 38:163–167

    Article  PubMed  CAS  Google Scholar 

  28. Chowdhury D, Beresford PJ, Zhu P et al (2006) The exonuclease TREX1 is in the SET complex and acts in concert with NM23-H1 to degrade DNA during granzyme A-mediated cell death. Mol Cell 23:133–142

    Article  PubMed  CAS  Google Scholar 

  29. Garzia L, Roma C, Tata N et al (2006) H-prune-nm23-H1 protein complex and correlation to pathways in cancer metastasis. J Bioenerg Biomembr 38:205–213

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author’s work is supported by MiUR-PRIN 2005 Programmes (to N.Z. and T.R.), Regione Campania (L.R. n. 5), 6th Framework Programme, EU (APOPIS) to T.R. We thank the Centro Regionale di Competenza GEAR (Genomics for Applied Research) for 2D-DIGE facility, and M. Zollo for helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tommaso Russo or Nicola Zambrano.

Additional information

Special issue article in honor of Dr. Anna Maria Giuffrida-Stella.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Napolitano, F., D’Angelo, F., Bimonte, M. et al. A Differential Proteomic Approach Reveals an Evolutionary Conserved Regulation of Nme Proteins by Fe65 in C. elegans and Mouse. Neurochem Res 33, 2547–2555 (2008). https://doi.org/10.1007/s11064-008-9683-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-008-9683-z

Keywords

Navigation