Skip to main content
Log in

Fuzzy Min–Max Neural Network for Learning a Classifier with Symmetric Margin

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

A fuzzy min–max neural network with symmetric margin (FMNWSM) is proposed in this paper. Therefore, its probability of misclassification is lower than traditional fuzzy min–max neural networks if both training and test samples are from identical probability distribution. Meanwhile, data is classified with symmetric margin by the use of a non-linear program which is solved analytically. In other words, to decrease learning time, no numerical optimization algorithm is used to solve the non-linear program. Only hyperbox expansion is performed in training phase of FMNWSM. On the contrary, in training phase of traditional fuzzy min–max neural networks, another process also is performed for each overlapped region such as (a) contraction process or (b) creating an especial node. Therefore, learning time of FMNWSM is less than that of traditional fuzzy min–max neural networks and since FMNWSM does not create any special node for overlapped regions, the space complexity of FMNWSM is better than those that create an especial node for an overlapped region. It is shown also that the test time complexity of FMNWSM is much better than that of traditional fuzzy min–max neural networks because of the use of a simpler activation function in its hyperbox node. Finally, the proposed fuzzy min–max neural networks, namely FMNWSM, is compared with some of traditional fuzzy min–max neural networks (i.e. FMNN, GFMN, FMCN and DCFMN) empirically (by using some real datasets) and also analytically to show the superiority of FMNWSM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. \(N\) hyperboxes of other classes are contained in the hyperbox expanded in previous step and \(n\)th dimension has the smallest overlap.

References

  1. Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353

    Article  MathSciNet  MATH  Google Scholar 

  2. Carpenter G, Grossberg S, Rosen DB (1991) Fuzzy ART: an adaptive resonance algorithm for rapid, stable classification of analog patterns. Presented at the international joint conference on neural networks, Seattle, WA

  3. Carpenter GA, Grossberg S (1987) A massively parallel architecture for a self-organizing neural pattern recognition machine. Comput Vis Graph Image Process 37:54–115

    Article  Google Scholar 

  4. Simpson PK (1993) Fuzzy min–max neural network—part II: clustering. IEEE Trans Fuzzy Syst 1:32–45

    Article  Google Scholar 

  5. Hu J, Yang J, Gao J (2007) An ordination-fuzzy min–max neural network classifier on unlabelled pattern classification. Pattern recognition and artificial intelligence, pp 173–179

  6. Simpson PK (1992) Fuzzy min–max neural network-part I: classification. IEEE Trans Neural Netw 3:776–786

    Article  Google Scholar 

  7. Alpern B, Carter L (1991) The hyperbox. In: IEEE conference on visualization, San Diego, CA, pp 133–139

  8. Joshi A, Ramakrishman N, Houstis EN, Rice JR (1997) On neurobiological, neuro-fuzzy, machine learning, and statistical pattern recognition techniques. IEEE Trans Neural Netw 8:18–31

    Article  Google Scholar 

  9. Xi C, Dongming J, Zhijian L (2001) Recursive training for multi-resolution fuzzy min-max neural network classifier. In: 6th International conference on solid–state and integrated-circuit technology, Shanghai, China, pp 131–134

  10. Gabrys B, Bargiela A (2000) General fuzzy min–max neural network for clustering and classification. IEEE Trans Neural Netw 11:769–783

    Article  Google Scholar 

  11. Mascioli FMF, Martinelli G (1998) A constructive approach to neurofuzzy networks. Sig Process 64:347–358

    Article  MATH  Google Scholar 

  12. Abe S, Lan MS (1995) A method for fuzzy rules extraction directly from numerical data and its application to pattern classification. IEEE Trans Fuzzy Syst 3:18–28

    Article  Google Scholar 

  13. Meneganti M, Saviello FS, Tagliaferri R (1998) Fuzzy neural networks for classification and detection of anomalies. IEEE Trans Neural Netw 9:848–861

    Article  Google Scholar 

  14. Rizzi A, Panella M, Mascioli FMF (2002) Adaptive resolution min–max classifiers. IEEE Trans Neural Netw 13:402–414

    Article  Google Scholar 

  15. Rizzi A, Panella M, Mascioli FMF, Martinelli G (2000) A recursive algorithm for fuzzy min–max networks. In: International joint conference on neural networks, pp 541–546

  16. Tagliaferri R, Eleuteri A, Meneganti M, Barone F (2001) Fuzzy min–max neural networks: from classification to regression. Soft Comput 5:69–76

    Article  Google Scholar 

  17. Quteishat A, Lim CP, Tan KS (2010) A modified fuzzy min–max neural network with a genetic-algorithm-based rule extractor for pattern classification. IEEE Trans Syst Man Cybern Part A Syst Humans 40:641–650

    Article  MATH  Google Scholar 

  18. Quteishat A, Lim CP (2008) A modified fuzzy min–max neural network with rule extraction and its application to fault detection and classification. Appl Soft Comput 8:985–995

    Article  Google Scholar 

  19. Bargiela A, Pedrycz W, Tanaka M (2003) Exclusion/inclusion fuzzy classification network. In: Palade V, Howlett R, Jain L (eds) Knowledge-based intelligent information and engineering systems, vol 2773. Springer, Berlin, pp 1236–1241

  20. Bargiela A, Pedrycz W, Tanaka H (2004) An inclusion/exclusion fuzzy hyperbox classifier. Int J Knowl Based Intell Eng Syst 8:91–98

    Google Scholar 

  21. Bargiela A, Tanaka M, Castellano G, Fanelli AM (2004) Adaptation of exclusion/inclusion hyperboxes for classification of complex data. In: 5th Asia Pacific industrial engineering and management systems conference. Brisbane, Australia

  22. Nandedkar AV, Biswas PK (2007) A fuzzy min–max neural network classifier with compensatory neuron architecture. IEEE Trans Neural Netw 18:42–54

    Article  Google Scholar 

  23. Nandedkar AV, Biswas PK (2009) A granular reflex fuzzy min–max neural network for classification. IEEE Trans Neural Netw 20:1117–1134

    Article  Google Scholar 

  24. Rey-del-Castillo P, Cardeñosa J (2012) Fuzzy min–max neural networks for categorical data: application to missing data imputation. Neural Comput Appl 21:1349–1362

    Article  Google Scholar 

  25. Vapnik VN (1995) The nature of statistical learning theory. Springer, New York

    Book  Google Scholar 

  26. Vapnik VN (1998) Statistical learning theory. Wiley, New York

    MATH  Google Scholar 

  27. Zhang H, Liu J, Ma D, Wang Z (2011) Data-core-based fuzzy min–max neural network for pattern classification. IEEE Trans Neural Netw Part 2 22:2339–2352

    Article  MATH  Google Scholar 

  28. Ma D, Liu J, Wang Z (2012) The pattern classification based on fuzzy min–max neural network with new algorithm. In: Wang J, Yen G, Polycarpou M (eds) Advances in neural networks—ISNN 2012, vol 7368. Springer, Berlin, pp 1–9

  29. Bazara MS, Sherali HD, Shetty CM (2006) Nonlinear programming, 3rd edn. Willey, New York

  30. Blake CL, Merz CJ. UCI repository of machine learning databases [Online]. Available: http://www.ics.uci.edu/ mlearn/MLRepository.html

  31. Loh WY, Shih YS (1997) Split selection methods for classification trees. Stat Sinica 7:815–840

    MathSciNet  Google Scholar 

  32. Hong ZQ, Yang JY (1991) Optimal discriminant plane for a small number of samples and design method of classifier on the plane. Pattern Recogn 24:317–324

    Article  MathSciNet  Google Scholar 

  33. Detrano R, Janosi A, Steinbrunn W, Pfisterer M, Schmid J, Sandhu S, et al (1989) International application of a new probability algorithm for the diagnosis of coronary artery disease. Am J Cardiol 64:304–310

  34. Fisher RA (1936) The use of multiple measurements in taxonomic problems. Ann Eugen 7:179–188

    Article  Google Scholar 

  35. Jossinet J (1996) Variability of impedivity in normal and pathological breast tissue. Med Biol Eng Comput 34:346–350

    Article  Google Scholar 

  36. Bareiss ER, Porter B (1987) Protos: an exemplar-based learning apprentice. In: 4th International workshop on machine learning. CA, Irvine, pp 12–23

  37. Wolberg WH, Street WN, Heisey DN, Mangasarian OL (1995) Computerized breast cancer diagnosis and prognosis from fine-needle aspirates. Arch Surg 130:511–516

    Article  Google Scholar 

  38. Cendrowska J (1987) PRISM: an algorithm for inducing modular rules. Int J Man Mach Stud 27:349–370

    Article  Google Scholar 

  39. Woolery L, Grzymala-Busse J, Summers S, Budihardjo A (1991) The use of machine learning program LERS\_LB 2.5 in knowledge acquisition for expert system development in nursing. Comput Nurs 9:227–234

    MATH  Google Scholar 

  40. Gorman RP, Sejnowski TJ (1988) Analysis of hidden units in a layered network trained to classify sonar targets. Neural Netw 1:75–89

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yahya Forghani.

Appendix

Appendix

Proposition 1

The behavior of FMNWSM is equivalent to the behavior of the model M1).

Proof

FMNWSM assigns applied input data \(A\) to the class of hyperbox \(B_q \), where

$$\begin{aligned} q=\hbox {arg }\hbox {max}_l \left\{ {\min \nolimits _j \left\{ {s_{lj} -\left| {a_j -m_{lj} } \right| } \right\} } \right\} , \end{aligned}$$
(6)

If we prove that \(\hbox {arg }\hbox {min}_l \left\{ {\min \nolimits _{\mathrm{Z}\in \mathrm{closure} \left( {SR_l } \right) } \left\{ {||A-Z||_\infty } \right\} } \right\} =\hbox {arg }\hbox {max}_l \left\{ {\min _j \left\{ {s_{lj} -\left| {a_j -m_{lj} } \right| } \right\} } \right\} =q\) (where \(\left| . \right| \) is absolute function and \(||.||_\infty \) is infinite-norm), it can be said that the behavior of FMNWSM is equivalent to the behavior of the model (M1) and the proof is complete.

(a) A is in non-overlapped regions:

When \(A\) is in non-overlapped regions, it is either out of every hyperboxes or in non-overlapped region of a hyperbox.

(a.1) A is out of every hyperboxes:

The proposed neural network FMNWSM assigns \(A\) to the class of hyperbox \(B_q \), where \(q=\hbox {arg }\hbox {max}_l \left\{ {\min _j \left\{ {s_{lj} -\left| {a_j -m_{lj} } \right| } \right\} } \right\} \). If we prove that \(\min _j \left\{ {s_{lj} -\left| {a_j -m_{lj} } \right| } \right\} =-\min _{\mathrm{Z}\in B_l } \left\{ {||A-Z||_\infty } \right\} \), then it can be said that FMNWSM assigns \(A\) to the class of hyperbox \(B_q \), where \(q=\hbox {arg }\hbox {max}_l \left\{ {-\min _{\mathrm{Z}\in B_l } \left\{ {d\left( {A,Z} \right) } \right\} } \right\} =\hbox {arg }\hbox {min}_l \left\{ {\min _{\mathrm{Z}\in B_l } \left\{ {d\left( {A,Z} \right) } \right\} } \right\} \), and \(d\left( {A,Z} \right) =||A-Z||_\infty \). Therefore, the behavior of the proposed neural network FMNWSM for such applied input data is equivalent to the model (M1). Thus, it suffices to prove that \(-\min _{\mathrm{Z}\in B_l } \left\{ {||A-Z||_\infty } \right\} =\min _j \left\{ {s_{lj} -\left| {a_j -m_{lj} } \right| } \right\} ,\) or equivalently \(\min _{\mathrm{Z}\in B_l } \left\{ {||A-Z||_\infty } \right\} =\max _j \left\{ {\left| {a_j -m_{lj} } \right| -s_{lj} } \right\} .\)

We have

$$\begin{aligned} \min \nolimits _{\mathrm{Z}\in B_l } \left\{ {||A-Z||_\infty } \right\} =\min \nolimits _{\mathrm{Z}\in B_l } \left\{ {\max \nolimits _j \left\{ {\left| {a_j -z_j } \right| } \right\} } \right\} =\max \nolimits _j \left\{ {\min \nolimits _{z_{j} \in B_{lj} } \left\{ {\left| {a_j -z_j } \right| } \right\} } \right\} .\nonumber \\ \end{aligned}$$
(7)

If \(a_j \) is out of the \(B_{lj} \), \(\min _{z_j \in B_{lj} } \left\{ {\left| {a_j -z_j } \right| } \right\} =\left| {a_j -m_{lj} } \right| -s_{lj} \). If \(a_j \) is in the \(B_{lj} \), \(\min _{z_j \in B_{lj} } \left\{ {\left| {a_j -z_{lj} } \right| } \right\} =0 \ge \left| {a_j -m_{lj} } \right| -s_{lj} \). Moreover, since we supposed that \(A\) is out of every hyperboxes, there is at-least one \(j\) such that \(a_j \) be out of the \(B_{lj} \) (for each \(l)\), and we have for such \(j\), \(\left| {a_j -m_{lj} } \right| -s_{lj} >0\). Therefore, from Eq. (7), it can be stated that \(\min _{\mathrm{Z}\in B_l } \left\{ {||A-Z||_\infty } \right\} =\max _j \left\{ {\left| {a_j -m_{lj} } \right| -s_{lj} } \right\} \).

(a.2) A is in non-overlapped region of a hyperbox, i.e. \(B_q:\)

We have

$$\begin{aligned} -\min \nolimits _{\mathrm{Z}\in B_q } \left\{ {||A-Z||_\infty } \right\} =0\le \min \nolimits _j \left\{ {s_{qj} -\left| {a_j -m_{qj} } \right| } \right\} . \end{aligned}$$
(8)

Since we supposed that \(A\) is in non-overlapped regions, for each \(i\ne q\), \(A\) is out of \(B_i \). Therefore, from part (a.1) of this proof, for each \(i\ne q\):

$$\begin{aligned} -\min \nolimits _{\mathrm{Z}\in B_i } \left\{ {||A-Z||_\infty } \right\} =\min \nolimits _j \left\{ {s_{ij} -\left| {a_j -m_{ij} } \right| } \right\} <0. \end{aligned}$$
(9)

Thus, from Eqs. (8) and (9), \(\hbox {arg }\hbox {max}_l \left\{ {\min \nolimits _j \left\{ {s_{lj} -\left| {a_j -m_{lj} } \right| } \right\} } \right\} =\hbox {arg }\hbox {max}_l \left\{ {-\min _{\mathrm{Z}\in B_l } \left\{ {||A-Z||_\infty } \right\} } \right\} = \hbox {arg }\hbox {min}_l \left\{ {\min _{\mathrm{Z}\in B_l } \left\{ {d\left( {A,Z} \right) } \right\} } \right\} =q\).

Therefore, since the proposed neural network FMNWSM, assigns \(A\) to the class of hyperbox \(B_q \), where \(q=\hbox {arg }\hbox {max}_l \left\{ {\min _j \left\{ {s_{lj} -\left| {a_j -m_{lj} } \right| } \right\} } \right\} \), it can be said that FMNWSM assigns \(A\) to the class of hyperbox \(B_q \), where \(q=\hbox {arg }\hbox {min}_l \left\{ {\min _{\mathrm{Z}\in B_l } \left\{ {d\left( {A,Z} \right) } \right\} } \right\} \), and \(d\left( {A,Z} \right) =||A-Z||_\infty \).

Therefore, from part (a.1) and (a.2) of this proof, if \(A\) is in non-overlapped regions, FMNWSM assigns it to the class of hyperbox \(B_q \), where \(q=\hbox {arg }\hbox {min}_l \left\{ {\min _{\mathrm{Z}\in B_l } \left\{ {d\left( {A,Z} \right) } \right\} } \right\} \) and \(d\left( {A,Z} \right) =||A-Z||_\infty \). Since \(A\) is in non-overlapped regions, \(\min _{\mathrm{Z}\in B_l } \left\{ {d\left( {A,Z} \right) } \right\} =\min _{\mathrm{Z}\in \hbox {closure}\left( {SR_l } \right) } \left\{ {d\left( {A,Z} \right) } \right\} \). Therefore, \(q=\hbox {arg }\hbox {min}_l \left\{ {\min _{\mathrm{Z}\in \hbox {closure}\left( {SR_l } \right) } \left\{ {d\left( {A,Z} \right) } \right\} } \right\} \).

b) A is in an overlapped region, i.e. \( \bigcap \nolimits _{l=d}^h B_l \quad \left( {1\le d<h\le n} \right) :\)

From proposition 2, if \(A\) is in the \(B_l \), or in other words, if \(A\cap B_l \ne \emptyset ,\)

$$\begin{aligned} \min \nolimits _j \left\{ {s_{lj} -\left| {a_j -m_{lj} } \right| } \right\} =\min \nolimits _{\mathrm{Z}\in \mathrm{closure}\left( {\bar{b}_l } \right) } \left\{ {||A-Z||_\infty } \right\} \ge 0, \end{aligned}$$
(10)

where \(\bar{b}_l =\left\{ {Z\left| {Z\notin B_l } \right. } \right\} \). Moreover, For each \(l\), if \(A\) is out of \(B_l \) or \(A\mathop \cap \nolimits ^ B_l =\emptyset \),

$$\begin{aligned} \min \nolimits _j \left\{ {s_{lj} -\left| {a_j -m_{lj} } \right| } \right\} <0. \end{aligned}$$
(11)

From Eqs. (10) and (11), Eq. (6) can be restated as follows:

$$\begin{aligned} q&= \hbox {arg }\hbox {max}_{l=d,d+1,\ldots ,h} \left\{ {\min \nolimits _j \left\{ {s_{lj} -\left| {a_j -m_{lj} } \right| } \right\} } \right\} \nonumber \\&= \hbox {arg }\hbox {max}_{l=d,d+1,\ldots ,h} \left\{ \min \nolimits _{\mathrm{Z}\in \mathrm{closure}\left( \bar{b}_l \right) } \left\{ {||A-Z||_\infty } \right\} \right\} . \end{aligned}$$
(12)

b.1) h-d=1, namely the overlapped region \(\bigcap \nolimits _{l=d}^h B_l \) belongs to only two hyperboxes \(B_d \) and \(B_h \)

Therefore, Eq. (12) can be restated as follows:

$$\begin{aligned} q=\hbox {arg }\hbox {max}_{l=d,h} \left\{ {\min \nolimits _{\mathrm{Z}\in \mathrm{closure}\left( {\bar{b}_l} \right) } \left\{ {||A-Z||_\infty } \right\} } \right\} . \end{aligned}$$
(13)

Without loss of generality, let \(\min \nolimits _{\mathrm{Z}\in \mathrm{closure}\left( {\bar{b}_d } \right) } \left\{ {||A-Z||_\infty } \right\} >\min \nolimits _{\mathrm{Z}\in \mathrm{closure}\left( {\bar{b}_h } \right) } \left\{ {||A-Z||_\infty } \right\} \). Since \(B_d \cap B_h \cap closure\left( {\bar{b}_d } \right) =B_d \cap B_h \cap closure\left( {SR_h } \right) \), and \(B_d \cap B_h \cap closure\left( {\bar{b}_h } \right) =B_d \cap B_h \cap closure\left( {SR_d } \right) \), and \(A\) was supposed to be in the overlapped region \(B_d \cap B_h\), \(\min \nolimits _{\mathrm{Z}\in \mathrm{closure}\left( {SR_h } \right) } \left\{ \right. ||A-Z \infty >\min {\hbox {Z}\in \hbox {closure} SRd A-Z \infty }\). Therefore, \(max_{l=d,h} \left\{ {\min \nolimits _{\mathrm{Z}\in \mathrm{closure}\left( {\bar{b}_l } \right) } \left\{ {||A-Z||_\infty } \right\} } \right\} =min_{l=d,h} \left\{ {\min \nolimits _{\mathrm{Z}\in \mathrm{closure}\left( {SR_l } \right) } \left\{ {||A-Z||_\infty } \right\} } \right\} \). Thus, Eq. (13) can be restated as \(q=\hbox {arg }\hbox {min}_{l=d,h} \left\{ {\min \nolimits _{\mathrm{Z} \in \mathrm{closure}\left( {SR_l } \right) } \left\{ {||A-Z||_\infty } \right\} } \right\} \), and since for each \(o\ne d\) and \(h\), \(min_{l=d,h} \left\{ {\min \nolimits _{\mathrm{Z}\in \mathrm{closure}\left( {SR_l } \right) } \left\{ {||A-Z||_\infty } \right\} } \right\} <\min \nolimits _{\mathrm{Z}\in \mathrm{closure}\left( {SR_o } \right) } \left\{ {||A-Z||_\infty } \right\} \), It can be stated that \(\hbox {arg }\hbox {min}_{l=d,h} \left\{ {\min \nolimits _{\mathrm{Z} \in \mathrm{closure}\left( {SR_l } \right) } \left\{ {||A-Z||_\infty } \right\} } \right\} =\hbox {arg }\hbox {min}_l \left\{ {\min \nolimits _{\mathrm{Z} \in \mathrm{closure}\left( {SR_l } \right) } \left\{ {||A-Z||_\infty } \right\} } \right\} .\) Therefore, \(q=\hbox {arg }\hbox {min}_l \left\{ {\min \nolimits _{\mathrm{Z}\in \mathrm{closure}\left( {SR_l } \right) } \left\{ {||A-Z||_\infty } \right\} } \right\} \).

b-2) h-d>1, namely the overlapped region \(\bigcap \nolimits _{l=d}^h B_l \) belongs to more than two hyperboxes

For simplicity and without loss of generality of proof, suppose that \(h-d=2\), namely the overlapped region \(\bigcap \nolimits _{l=d}^h B_l \) belongs to three hyperboxes (See Fig. 17). Let \(d\), \(e\) and \(h\) be the indices of these three hyperboxes. We have for each \(A\) in this overlapped region:

$$\begin{aligned}&max\left\{ {\min \nolimits _{\mathrm{Z}\in \mathrm{closure}\left( {\bar{b}_d } \right) } \left\{ {||A-Z||_\infty } \right\} ,} \right. \left. \min \nolimits _{\mathrm{Z}\in \mathrm{closure}\left( {\bar{b}_e } \right) } \left\{ {||A-Z||_\infty } \right\} ,\right. \\&\quad \left. \min \nolimits _{\mathrm{Z} \in \mathrm{closure}\left( {\bar{b}_h } \right) } \left\{ {||A-Z||_\infty } \right\} \right\} \\&\quad = max\left\{ {max\left\{ {\left. {\min \nolimits _{\mathrm{Z} \in \mathrm{closure}\left( {\bar{b}_d } \right) } \left\{ {||A-Z||_\infty } \right\} ,\min \nolimits _{\mathrm{Z}\in \mathrm{closure}\left( {\bar{b}_e } \right) } \left\{ {||A-Z||_\infty } \right\} } \right\} ,} \right. } \right. \\&\quad \left. {\min \nolimits _{\mathrm{Z}\in \mathrm{closure} \left( {\bar{b}_h } \right) } \left\{ {||A-Z||_\infty } \right\} } \right\} . \end{aligned}$$

Without loss of generality of proof, let

$$\begin{aligned}&\min \nolimits _{\mathrm{Z}\in \mathrm{closure}\left( {\bar{\bar{b}}}_d\right) } \left\{ {||A-Z||_\infty } \right\} \nonumber \\&\quad = max\left\{ {\min \nolimits _{\mathrm{Z} \in \mathrm{closure}\left( \bar{b}_d\right) } \left\{ {||A-Z||_\infty } \right\} } \right. , \left. {\min \nolimits _{\mathrm{Z}\in \mathrm{closure}\left( {\bar{b}_e}\right) } \left\{ {||A-Z||_\infty } \right\} } \right\} . \end{aligned}$$
(14)

Therefore,

$$\begin{aligned}&max\left\{ max\left\{ {\left. {\min \nolimits _{\mathrm{Z}\in \mathrm{closure} \left( {\bar{b}_d } \right) } \left\{ {||A-Z||_\infty } \right\} ,\min \nolimits _{\mathrm{Z}\in \mathrm{closure}\left( {\bar{b}_e } \right) } \left\{ {||A-Z||_\infty } \right\} } \right\} ,} \right. \left. {\min \nolimits _{\mathrm{Z}\in \mathrm{closure}\left( {\bar{b}_h } \right) } \left\{ {||A-Z||_\infty } \right\} } \right\} \right. \nonumber \\&\quad =max\left\{ {\min \nolimits _{\mathrm{Z}\in \mathrm{closure}\left( {\bar{b}_d } \right) } \left\{ {||A-Z||_\infty } \right\} , \min \nolimits _{\mathrm{Z}\in \mathrm{closure}\left( {\bar{b}_h } \right) } \left\{ {||A-Z||_\infty } \right\} } \right. . \end{aligned}$$
(15)

Similar to part (b.1) of this proof,

$$\begin{aligned}&max\left\{ {\min \nolimits _{\mathrm{Z}\in \mathrm{closure}\left( {\bar{b}_d } \right) } \left\{ {||A-Z||_\infty } \right\} } \right. ,\left. { \min \nolimits _{\mathrm{Z}\in \mathrm{closure}\left( {\bar{b}_h } \right) } \left\{ {||A-Z||_\infty } \right\} } \right\} \nonumber \\&\quad = min\left\{ {\min \nolimits _{\mathrm{Z}\in \mathrm{closure}\left( {SR_d } \right) } \left\{ {||A-Z||_\infty } \right\} } \right. ,\left. {\min \nolimits _{\mathrm{Z}\in \mathrm{closure} \left( {SR_h } \right) } \left\{ {||A-Z||_\infty } \right\} } \right\} . \end{aligned}$$
(16)

From Eq. (14), \(\min \nolimits _{\mathrm{Z}\in \mathrm{closure}\left( {\bar{b} _d } \right) } \left\{ {||A-Z||_\infty } \right\} \ge \min \nolimits _{\mathrm{Z}\in \mathrm{closure}\left( {\bar{b}_e } \right) } \left\{ {||A-Z||_\infty } \right\} \). Therefore, since \(B_d \cap B_e \cap \hbox {closure}\left( {\bar{b}_d } \right) =B_d \cap B_e \cap \hbox {closure}\left( {SR_e } \right) , B_d \cap B_e \cap \hbox {closure}\left( {\bar{b}_e } \right) =B_d \cap B_e \cap \hbox {closure}\left( {SR_d } \right) \), and \(A\) is supposed to be in \(B_d \cap B_e , \min \nolimits _{\mathrm{Z}\in \mathrm{closure} \left( {SR_e } \right) } \left\{ {||A-Z||_\infty } \right\} \ge \min \nolimits _{\mathrm{Z}\in \mathrm{closure} \left( {SR_d } \right) } \left\{ {||A-Z||_\infty } \right\} \). Therefore,

$$\begin{aligned}&min\left\{ {min_{\mathrm{Z}\in \mathrm{closure}\left( {SR_d } \right) } \left\{ {||A-Z||_\infty } \right\} } \right. , \left. {\min \nolimits _{\mathrm{Z}\in \mathrm{closure}\left( {SR_h } \right) } \left\{ {||A-Z||_\infty } \right\} } \right\} \nonumber \\&\quad = min\left\{ {\hbox {min}\left\{ {\min \nolimits _{\mathrm{Z}\in \mathrm{closure} \left( {SR_d } \right) } \left\{ {||A-Z||_\infty } \right\} } \right. } \right. ,\left. {\min \nolimits _{\mathrm{Z}\in \mathrm{closure}\left( {SR_e } \right) } \left\{ {||A-Z||_\infty } \right\} } \right\} ,\left. {\min \nolimits _{\mathrm{Z}\in \mathrm{closure} \left( {SR_h } \right) } \left\{ {||A-Z||_\infty } \right\} } \right\} \nonumber \\&\quad = min\left\{ {\min \nolimits _{\mathrm{Z}\in \mathrm{closure} \left( {SR_d } \right) } \left\{ {||A-Z||_\infty } \right\} ,\min \nolimits _{\mathrm{Z}\in \mathrm{closure}\left( {SR_e } \right) } \left\{ {||A-Z||_\infty } \right\} ,} \right. \left. {\min \nolimits _{\mathrm{Z}\in \mathrm{closure} \left( {SR_h } \right) } \left\{ {||A-Z||_\infty } \right\} } \right\} . \end{aligned}$$
(17)

Thus, from Eqs. (15), (16) and (17),

$$\begin{aligned}&max\left\{ \min \nolimits _{\mathrm{Z}\in \mathrm{closure}\left( {\bar{b}_d } \right) } \left\{ {||A-Z||_\infty } \right\} ,\min \nolimits _{\mathrm{Z}\in \mathrm{closure} \left( {\bar{b}_e } \right) } \left\{ {||A-Z||_\infty } \right\} ,\left. {\min \nolimits _{\mathrm{Z}\in \mathrm{closure} \left( {\bar{b}_h } \right) } \left\{ {||A-Z||_\infty } \right\} } \right\} \right. \\&\quad = min\left\{ \min \nolimits _{\mathrm{Z}\in \mathrm{closure} \left( {SR_d } \right) } \left\{ {||A-Z||_\infty } \right\} , \min \nolimits _{\mathrm{Z}\in \mathrm{closure} \left( {SR_e } \right) } \left\{ {||A-Z||_\infty } \right\} , \min \nolimits _{\mathrm{Z}\in \mathrm{closure} \left( {SR_h } \right) } \left\{ {||A-Z||_\infty } \right\} \right\} . \end{aligned}$$

Therefore, similar to part (b.1) of this proof, we can write \(q=\hbox {arg }\hbox {min}_l \left\{ {\min \nolimits _{\mathrm{Z}\in \mathrm{closure} \left( {SR_l } \right) } \left\{ {||A-Z||_\infty } \right\} } \right\} \).

Fig. 17
figure 17

An overlapped region which belongs to three hyperboxes

Finally, based on part (a) and (b) of this proof, FMNWSM assigns each \(A\) to the class of hyperbox \(B_q\), where

$$\begin{aligned} q=\hbox {arg }\hbox {min}_l \left\{ \min \nolimits _{\mathrm{Z}\in \mathrm{closure} \left( {SR_l } \right) } \left\{ d\left( {A,Z} \right) \right\} \right\} , \hbox {and } d\left( {A,Z} \right) =||A-Z||_\infty . \end{aligned}$$

\(\square \)

Proposition 2

If \(A \cap B_l \ne \emptyset \) (\(A\) is in hyperbox \(B_l\)), \(\min \nolimits _{\mathrm{Z}\in \mathrm{closure} \left( {\bar{b}_l } \right) } \left\{ {||A-Z||_\infty } \right\} =\min _j \left\{ {s_{lj} -\left| {a_j -m_{lj} } \right| } \right\} \).

Proof

Let \(D=\arg \min \nolimits _{\mathrm{Z}\in \mathrm{closure}\left( {\bar{b}_l } \right) } \left\{ {||A-Z||_\infty } \right\} \), where \(D=\left( {d_1 ,d_2 ,\ldots ,d_n } \right) ^{{\prime }}\). The line \(AD\) is orthogonal to a surface of \(B_l \), or in other words, it is parallel to \(n-1\) axes and orthogonal to one remaining axis. If \(AD\) is parallel to \(t\)-th axis, for each \(i\ne t\), \(a_i -d_i =0\). Therefore, \(\min \nolimits _{\mathrm{Z}\in \mathrm{closure} \left( {\bar{b}_l } \right) } \left\{ {||A-Z||_\infty } \right\} =A-D_\infty =\max _j \left\{ {\left| {a_j -d_j } \right| } \right\} =\left| {a_t -d_t } \right| =\hbox {min}_j \left\{ {\min \nolimits _{\mathrm{Z}\in \mathrm{closure}\left( {\bar{b}_{lj} } \right) } \left\{ {\left| {a_j -z} \right| } \right\} } \right\} \). Meanwhile \(,\min \nolimits _{\mathrm{Z}\in \mathrm{closure}\left( {\bar{b}_{lj} } \right) } \left\{ \left| {a_j\!-\!z} \!=\!slj\!-\!aj\!-\!mlj\right. \right. \). Therefore, \(\min \mathrm{Z}\in \mathrm{closure} bl A-Z\infty =\min j slj-aj-mlj\). \(\square \)

Proposition 3

The model (M1) classifies \(SR_i \left( {i=1,2,\ldots ,m} \right) \) with symmetric margin.

Proof

Suppose that the hyperboxes have no overlapping. Let class \(\left( {-1} \right) \equiv \) classes \(\left( {1,2,\ldots ,q-1,q+1,\ldots ,k} \right) \) and class \(\left( {+1} \right) \equiv \) class \(\left( q \right) \). Then, the model (M1) can be restated as follows:

$$\begin{aligned} {\begin{array}{ll} {\hbox {find }f\left( . \right) } \\ {\hbox {s}.\hbox {t}.f\left( A \right) =\left\{ {{\begin{array}{ll} {+1}&{} {\min \nolimits _{SR_l \in class+1} \left\{ {\min \nolimits _{\mathrm{Z}\in \mathrm{closure} \left( {SR_l } \right) } \left\{ {d\left( {A,Z} \right) } \right\} } \right\} <\min \nolimits _{SR_l \in class-1} \left\{ {\min \nolimits _{\mathrm{Z}\in \mathrm{closure} \left( {SR_l } \right) } \left\{ {d\left( {A,Z} \right) } \right\} } \right\} ,} \\ {-1}&{} {\min \nolimits _{SR_l \in class+1} \left\{ {\min \nolimits _{\mathrm{Z}\in \mathrm{closure}\left( {SR_l } \right) } \left\{ {d\left( {A,Z} \right) } \right\} } \right\} >\min \nolimits _{SR_l \in class-1} \left\{ {\min \nolimits _{\mathrm{Z}\in \mathrm{closure}\left( {SR_l } \right) } \left\{ {d\left( {A,Z} \right) } \right\} } \right\} .} \\ \end{array} }} \right. } \\ \end{array} } \end{aligned}$$

In other words, test data \(A\) is assigned to

$$\begin{aligned} f\left( A \right) =\hbox {sign}\left( {\min \nolimits _{SR_l \in class-1} \left\{ {\min \nolimits _{\mathrm{Z}\in \mathrm{closure}\left( {SR_l } \right) } \left\{ {d\left( {A,Z} \right) } \right\} } \right\} -} \right. \left. {\min \nolimits _{SR_l \in class+1} \left\{ {\min \nolimits _{\mathrm{Z}\in \mathrm{closure} \left( {SR_l } \right) } \left\{ {d\left( {A,Z} \right) } \right\} } \right\} } \right) . \end{aligned}$$

Therefore, when \(\min _{SR_l \in class-1} \left\{ {\min \nolimits _{\mathrm{Z}\in \mathrm{closure} \left( {SR_l } \right) } \left\{ {d\left( {A,Z} \right) } \right\} } \right\} =\min _{SR_l \in class+1} \left\{ {\min \nolimits _{\mathrm{Z}\in \mathrm{closure}\left( {SR_l } \right) } \left\{ {d\left( {A,Z} \right) } \right\} } \right\} , \quad f\left( A \right) =0,\) and \(A\) is a point of the learned classifier. Thus, the distance from each point of the learned classifier to the nearest hyperboxes of class +1 is equal to the distance from that point of the learned classifier to the nearest hyperboxes of class -1. In other words, the \(f\left( . \right) \) has a symmetric margin. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Forghani, Y., Sadoghi Yazdi, H. Fuzzy Min–Max Neural Network for Learning a Classifier with Symmetric Margin. Neural Process Lett 42, 317–353 (2015). https://doi.org/10.1007/s11063-014-9359-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-014-9359-4

Keywords

Navigation