Skip to main content
Log in

Nonlinear Analysis of Quantitative EEGs in Patients with Syndromes of Post-Coma Disorders of Consciousness after Severe Traumatic Brain Injury

  • Published:
Neurophysiology Aims and scope

Electroencephalograms of 220 patients with post-coma disorders of consciousness after severe traumatic brain injury were analyzed using nonlinear multidimensional analysis, and the results were compared with those of standard linear time-amplitude analysis. Quantitative multichannel EEGs were recorded in the course of one-year-long clinical restorative treatment and rehabilitation. We tried to identify informative indices obtained using nonlinear analysis, which most closely correlated with the dynamics of the syndromes of altered consciousness (classification according to Dobrokhotova [34]). The diagnostic informational value of the results of nonlinear analysis of quantitative EEGs and sensitivity of this methodical approach in predicting positive/negative dynamics of consciousness recovery were estimated. Results of mapping of the values of entropy, dimension of the brain dynamic systems (complexity), parameters of the attractors, and multifractal properties of EEGs in different patient groups are described. It is concluded that the obtained results of nonlinear analysis demonstrate sertain advantages in prediction of the clinical course of post-coma disturbances of consciousness after brain trauma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Boccaletti, C. Grebogi, Y.-C. Lai, et al., “The control of chaos: Theory and applications,” Phys. Rep., 329, 108–109 (2000).

    Article  Google Scholar 

  2. O. Yu. Mayorov, A. D. Glukhov, V. N. Fenchenko, and A. B. Prognimak, “Implementation of the method of displacement using estimation of the size of the attractor axes in the dynamic system of the brain,” Kibernet. Vychisl. Tekhn., 153, 3–9 (2017).

    Google Scholar 

  3. O. Yu. Mayorov and V. N. Fenchenko, “Study of brain bioelectrical activity from the standpoint of multidimensional linear and nonlinear EEG analyses,” Klin. Inform. Telemed., 4, No. 5, 12–20 (2008).

    Google Scholar 

  4. O. Yu. Mayorov and V. N. Fenchenko, “Method of channels and jokers in the study of brain bioelectrical activity,” Klinich. Informat. Telemed., 8, No .9, 17–23 (2012).

    Google Scholar 

  5. I. B. Starchenko, A. A. Reznichenko, and R. Yu. Budko, “Modeling of electrical processes in the human brain using non-linear dynamics methods,” Prikasp. Zh. Upravl. Vys. Tekhnol., 2, No. 22, 80–88 (2013).

    Google Scholar 

  6. A. C. Soong and C. I. Stuart, “Evidence of chaotic dynamics underlying the human alpha-rhythm electroencephalogram,” Biol. Cybern., 62, No. 1, 55–62 (1989).

    Article  CAS  PubMed  Google Scholar 

  7. M. V. Aleksandrov, “Possibilities of quantitative EEG in assessing the level of depressed consciousness: ways to overcome the methodological crisis,” Proc. II Vseros. Sci. Pract. Conf. “Quantitative EEG and neurotherapy”, St. Petersburg, April 27-29, P. 5 (2009).

  8. Yu. V. Andreyev, A. S. Dmitriyev, and D. A. Kuminov, “Chaotic processors,” Usp. Sovrem. Radioelektron., No. 10, 50-77 (1997).

  9. A. S. Dmitriyev, “Chaos and information processing in nonlinear dynamic systems,” Radiotekh. Elektron., 38, No. 1, 1–24 (1993).

    Google Scholar 

  10. A. Rényi, “On measures of information and entropy,” in Proc. 4th Berkeley Symp. Math. Stat. Probab., Vol. 1, University of California Press, Berkeley, 547–561 (1960).

  11. C. J. Stam, “Nonlinear dynamical analysis of EEG and MEG: Review of an emerging field,” Clin. Neurophysiol., 116, No. 10, 2266–2301 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. P. E. Rapp, T. R. Bashore, J. M. Martinerie, et al., “Dynamics of brain electrical activity,” Brain Topogr., 2, Nos. 1–2, 99–118 (1989).

  13. J. J. Dunkin, A. F. Leuchter, T. F. Newton, and I. A. Cook, “Reduced EEG coherence in dementia: state or trait marker?” Biol. Psychiatry, 35, No. 11, 870–879 (1994).

    Article  CAS  PubMed  Google Scholar 

  14. O. Gosseries, C. Schnakers, D. Ledoux, et al., “Automated EEG entropy measurements in coma, vegetative state/unresponsive wakefulness syndrome and minimally conscious state,” Funct. Neurol., 26, No. 1, 25–30 (2011).

    PubMed  PubMed Central  Google Scholar 

  15. A. Babloyantz, “Chaotic dynamics in brain activity,” Behav. Brain Sci., 10, No. 2, 173–174 (1987).

    Article  Google Scholar 

  16. R. G. Michel, L. Glass, M. C. Mackey,and A Shrier, “Chaos in neurobiology,” IEEE Trans. Syst. Man Cybern., 13, No. 5, 790–798 (1983).

    Google Scholar 

  17. G. Mayer-Kress and S. P. Layne, “Dimensionality of the human encephalogram,” Ann. N.Y. Acad. Sci., 504, 62–87 (1987).

    Article  CAS  PubMed  Google Scholar 

  18. M. Lin, H. Chan, and S. Fang, “Linear and nonlinear EEG indexes in relation to the severity of coma,” Conf. Proc. IEEE Eng. Med. Biol. Soc., 5, 4580–4583 (2005).

    CAS  PubMed  Google Scholar 

  19. B. Vivien, O. Langeron, and B. Riou, “Entropy and bispectral index in brain-dead organ donors,” Intens. Care Med., 33, No. 5, 919–920 (2007).

    Article  Google Scholar 

  20. J. Wennervirta, T. Salmi, M. Hynynen, et al., “Entropy is more resistant to artifacts than bispectral index in braindead organ donors,” Intens. Care Med., 33, No. 1, 133–136 (2007).

    Article  Google Scholar 

  21. D. Y. Wu, G. Cai, Y. Yuan, et al., “Application of nonlinear dynamics analysis in assessing unconsciousness: A preliminary study,” Clin. Neurophysiol., 122, No. 3, 490-498 (2011).

    Article  PubMed  Google Scholar 

  22. O. Yu. Mayorov and V. N. Fenchenko, “On calculation of the parameters of deterministic chaos in studies of bioelectrical activity (EEG),” Klin. Inform. Telemed., 3, No. 4, 37–46 (2006).

    Google Scholar 

  23. J. Röschke, J. Fell, and P. Beckmann, “Nonlinear analysis of sleep EEG data in schizophrenia: calculation of the principal Lyapunov exponent,” Psychiatry Res.56, No. 3, 257–269 (1995).

    Article  PubMed  Google Scholar 

  24. A. Babloyantz and A. Destexhe, “Low-dimensional chaos in an instance of epilepsy,” Proc. Natl. Acad. Sci. U.S.A., 83, No. 10, 3515–3517 (1986).

    Article  Google Scholar 

  25. A. Babloyantz and A. Destexhe, “The Creutzfeldt–Jacob disease in the hierarchy of chaotic attractors,” In From Chemical to Biological Organization (M. Markus, S. Muller, and G. Nicolis, eds.), Springer, Berlin, 307–316 (1987).

  26. R. Hornero, A. Alonso, N. Jimero, et al., “Nonlinear analysis of time series generated by schizophrenic patients,” IEEE Eng. Med. Biol., 18, No. 3, 84–90 (1999).

    Article  CAS  Google Scholar 

  27. J. Jeong, J. H. Chae, S. Y. Kim, and S. H. Han, “Nonlinear dynamic analysis of the EEG in patients with Alzheimer’s disease and vascular dementia,” J. Clin. Neurophysiol., 18, No. 1, 58–67 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. F. Wendling., J. J. Bellanger, F. Bartolomei, and P. Chauvel,“ Relevance of nonlinear lumped-parameter models in the analysis of depth-EEG epileptic signals,” Biol. Cybernet., 83, No. 4, 367–378 (2000).

    Article  CAS  Google Scholar 

  29. N. V. Thakor and S. Tong., “Advances in quantitative electroencephalogram analysis methods,” Annu. Rev. Biomed. Eng., 6, 453–495 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Ye. V. Sharova, O. S. Zaytsev, G. A. Shchekut’yeva, et al., “EEG and EPs in predicting the development of unconscious states after a severe trauma,” Proc. Don. Natl. Med. Univ., 4, 82–84 (2008).

    Google Scholar 

  31. S. Slobounov, W. Sebastianelli, and M. Hallett, “Residual brain dysfunction observed one year post-mild traumatic brain injury: combined EEG and balance study,” Clin. Neurophysiol., 123, No. 9, 1755–1761 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  32. S. Spasic, M. Culic, G. Grbic, et al., “Spectral and fractal analysis of cerebellar activity after single and repeated brain injury,” Bull. Math. Biol., 70, No. 4, 1235–1249 (2008).

    Article  PubMed  Google Scholar 

  33. R. W. Thatcher, C. Biver, R. McAlaster, and A. Salazar, “Biophysical linkage between MRI and EEG coherence in closed head injury,” NeuroImage, 8, No. 4, 307–326 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. O. S Zaitsev and S. V Tsarenko, Neuroreanimatology in Coming out of the Coma (Therapy of Postcomatous States), Litass, Moscow (2012).

    Google Scholar 

  35. D. Y. Wu, G. Cai, R. D. Zorowitz, et al., “Measuring interconnection of the residual cortical functional islands in persistent vegetative state and minimal conscious state with EEG nonlinear analysis,” Clin. Neurophysiol., 122, No. 10, 1956–1966 (2011).

    Article  PubMed  Google Scholar 

  36. A. Destexhe, J.A. Sepulchre, and A. Babloyantz., “A comparative study of the experimental quantification of deterministic chaos,” Phys. Lett. A, 132, No. 2, 101–106 (1988).

    Article  Google Scholar 

  37. W. J. Freeman, “Simulation of chaotic EEG pattern with a dynamic model of the olfactory system,” Biol. Cybern., 56, No. 2–3, 139–150 (1987).

    Article  CAS  PubMed  Google Scholar 

  38. W. J. Freeman, Y. Yao, and B. Burke, “Central pattern generating and recognition in olfactory bulb: a correlation learning rule,” Neural Networks, 1, No. 4, 277–288 (1988)

    Article  Google Scholar 

  39. C. A. Skarda and W. J. Freeman, “How brains make chaos in order to make sense of the world,” Behav. Brain Sci., 10, 161–195 (1987).

    Article  Google Scholar 

  40. C. K. Peng, S. Havlin, H. E. Stanley, and A. L. Goldberger, “Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series,” Chaos, 5, No. 1, 82–87 (1995).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Kulyk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulyk, O.V. Nonlinear Analysis of Quantitative EEGs in Patients with Syndromes of Post-Coma Disorders of Consciousness after Severe Traumatic Brain Injury. Neurophysiology 50, 456–465 (2018). https://doi.org/10.1007/s11062-019-09778-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-019-09778-9

Keywords

Navigation