Skip to main content

Advertisement

Log in

Strong therapeutic potential of γ-secretase inhibitor MRK003 for CD44-high and CD133-low glioblastoma initiating cells

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

The Notch signal regulates both cell viability and apoptosis, and maintains stemness of various cancers including glioblastoma (GBM). Although Notch signal inhibition may be an effective strategy in treating GBM initiating cells (GICs), its applicability to the different subtypes of GBM remains unclear. Here, we analyzed the effectiveness of MRK003, a preclinical γ-secretase inhibitor, on GICs. Nine patient-derived GICs were treated by MRK003, and its efficacy on cell viability, apoptosis, sphere forming ability and Akt expression level which might be related to Notch downstream and be greatly important signals in GBM was evaluated. MRK003 suppressed viability and sphere-formation ability, and induced apoptosis in all GICs in varying doses of MRK003. Based on their sensitivities to MRK003, the nine GICs were divided into “relatively sensitive” and “relatively resistant” GICs. Sensitivity to MRK003 was associated with its inhibitory effect on Akt pathway. Transgenic expression of the myristoylated Akt vector in relatively sensitive GICs partially rescued the effect of MRK003, suggesting that the effect of MRK003 was, at least in part, mediated through inhibition of the Akt pathway. These GICs were differentiated by the expression of CD44 and CD133 with flow cytometric analysis. The relatively sensitive GICs are CD44-high and CD133-low. The IC50 of MRK003 in a set of GICs exhibited a negative correlation with CD44 and positive correlation with CD133. Collectively, MRK003 is partially mediated by the Akt pathway and has strong therapeutic potential for CD44-high and CD133-low GICs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996. doi:10.1056/NEJMoa043330

    Article  CAS  PubMed  Google Scholar 

  2. Wen PY, Kesari S (2008) Malignant gliomas in adults. N Engl J Med 359:492–507. doi:10.1056/NEJMra0708126

    Article  CAS  PubMed  Google Scholar 

  3. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, Kleihues P (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114:97–109. doi:10.1007/s00401-007-0243-4

    Article  PubMed Central  PubMed  Google Scholar 

  4. Gilbert MR, Wang M, Aldape KD, Stupp R, Hegi ME, Jaeckle KA, Armstrong TS, Wefel JS, Won M, Blumenthal DT, Mahajan A, Schultz CJ, Erridge S, Baumert B, Hopkins KI, Tzuk-Shina T, Brown PD, Chakravarti A, Curran WJ Jr, Mehta MP (2013) Dose-dense temozolomide for newly diagnosed glioblastoma: a randomized phase III clinical trial. J Clin Oncol 31:4085–4091. doi:10.1200/JCO.2013.49.6968

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Chen R, Nishimura MC, Bumbaca SM, Kharbanda S, Forrest WF, Kasman IM, Greve JM, Soriano RH, Gilmour LL, Rivers CS, Modrusan Z, Nacu S, Guerrero S, Edgar KA, Wallin JJ, Lamszus K, Westphal M, Heim S, James CD, VandenBerg SR, Costello JF, Moorefield S, Cowdrey CJ, Prados M, Phillips HS (2010) A hierarchy of self-renewing tumor-initiating cell types in glioblastoma. Cancer Cell 17:362–375. doi:10.1016/j.ccr.2009.12.049

    Article  CAS  PubMed  Google Scholar 

  6. Tamase A, Muraguchi T, Naka K, Tanaka S, Kinoshita M, Hoshii T, Ohmura M, Shugo H, Ooshio T, Nakada M, Sawamoto K, Onodera M, Matsumoto K, Oshima M, Asano M, Saya H, Okano H, Suda T, Hamada J, Hirao A (2009) Identification of tumor-initiating cells in a highly aggressive brain tumor using promoter activity of nucleostemin. Proc Natl Acad Sci USA 106:17163–17168. doi:10.1073/pnas.0905016106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Huang Z, Cheng L, Guryanova OA, Wu Q, Bao S (2010) Cancer stem cells in glioblastoma–molecular signaling and therapeutic targeting. Protein Cell 1:638–655. doi:10.1007/s13238-010-0078-y

    Article  CAS  PubMed  Google Scholar 

  8. Natsume A, Kinjo S, Yuki K, Kato T, Ohno M, Motomura K, Iwami K, Wakabayashi T (2011) Glioma-initiating cells and molecular pathology: implications for therapy. Brain Tumor Pathol 28:1–12. doi:10.1007/s10014-010-0011-3

    Article  CAS  PubMed  Google Scholar 

  9. Ables JL, Breunig JJ, Eisch AJ, Rakic P (2011) Not(ch) just development: notch signalling in the adult brain. Nat Rev Neurosci 12:269–283. doi:10.1038/nrn3024

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Ranganathan P, Weaver KL, Capobianco AJ (2011) Notch signalling in solid tumours: a little bit of everything but not all the time. Nat Rev Cancer 11:338–351. doi:10.1038/nrc3035

    Article  CAS  PubMed  Google Scholar 

  11. Kamstrup MR, Gjerdrum LM, Biskup E, Lauenborg BT, Ralfkiaer E, Woetmann A, Odum N, Gniadecki R (2010) Notch1 as a potential therapeutic target in cutaneous T-cell lymphoma. Blood 116:2504–2512. doi:10.1182/blood-2009-12-260216

    Article  CAS  PubMed  Google Scholar 

  12. Hu YY, Zheng MH, Cheng G, Li L, Liang L, Gao F, Wei YN, Fu LA, Han H (2011) Notch signaling contributes to the maintenance of both normal neural stem cells and patient-derived glioma stem cells. BMC Cancer 11:82. doi:10.1186/1471-2407-11-82

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Xu P, Qiu M, Zhang Z, Kang C, Jiang R, Jia Z, Wang G, Jiang H, Pu P (2010) The oncogenic roles of Notch1 in astrocytic gliomas in vitro and in vivo. J Neurooncol 97:41–51. doi:10.1007/s11060-009-0007-1

    Article  CAS  PubMed  Google Scholar 

  14. Zhang XP, Zheng G, Zou L, Liu HL, Hou LH, Zhou P, Yin DD, Zheng QJ, Liang L, Zhang SZ, Feng L, Yao LB, Yang AG, Han H, Chen JY (2008) Notch activation promotes cell proliferation and the formation of neural stem cell-like colonies in human glioma cells. Mol Cell Biochem 307:101–108. doi:10.1007/s11010-007-9589-0

    Article  CAS  PubMed  Google Scholar 

  15. Kanamori M, Kawaguchi T, Nigro JM, Feuerstein BG, Berger MS, Miele L, Pieper RO (2007) Contribution of Notch signaling activation to human glioblastoma multiforme. J Neurosurg 106:417–427. doi:10.3171/jns.2007.106.3.417

    Article  PubMed  Google Scholar 

  16. Cancer Genome Atlas Research N (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455:1061–1068. doi:10.1038/nature07385

    Article  Google Scholar 

  17. Stockhausen MT, Kristoffersen K, Poulsen HS (2010) The functional role of Notch signaling in human gliomas. Neuro Oncol 12:199–211. doi:10.1093/neuonc/nop022

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Ulasov IV, Nandi S, Dey M, Sonabend AM, Lesniak MS (2011) Inhibition of Sonic hedgehog and Notch pathways enhances sensitivity of CD133(+) glioma stem cells to temozolomide therapy. Mol Med 17:103–112. doi:10.2119/molmed.2010.00062

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Chen J, Kesari S, Rooney C, Strack PR, Chen J, Shen H, Wu L, Griffin JD (2010) Inhibition of notch signaling blocks growth of glioblastoma cell lines and tumor neurospheres. Genes Cancer 1:822–835. doi:10.1177/1947601910383564

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Fan X, Khaki L, Zhu TS, Soules ME, Talsma CE, Gul N, Koh C, Zhang J, Li YM, Maciaczyk J, Nikkhah G, Dimeco F, Piccirillo S, Vescovi AL, Eberhart CG (2010) NOTCH pathway blockade depletes CD133-positive glioblastoma cells and inhibits growth of tumor neurospheres and xenografts. Stem Cells 28:5–16. doi:10.1002/stem.254

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Schreck KC, Taylor P, Marchionni L, Gopalakrishnan V, Bar EE, Gaiano N, Eberhart CG (2010) The Notch target Hes1 directly modulates Gli1 expression and Hedgehog signaling: a potential mechanism of therapeutic resistance. Clin Cancer Res 16:6060–6070. doi:10.1158/1078-0432.CCR-10-1624

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Lewis HD, Leveridge M, Strack PR, Haldon CD, O’Neil J, Kim H, Madin A, Hannam JC, Look AT, Kohl N, Draetta G, Harrison T, Kerby JA, Shearman MS, Beher D (2007) Apoptosis in T cell acute lymphoblastic leukemia cells after cell cycle arrest induced by pharmacological inhibition of notch signaling. Chem Biol 14:209–219. doi:10.1016/j.chembiol.2006.12.010

    Article  CAS  PubMed  Google Scholar 

  23. Mizuma M, Rasheed ZA, Yabuuchi S, Omura N, Campbell NR, de Wilde RF, De Oliveira E, Zhang Q, Puig O, Matsui W, Hidalgo M, Maitra A, Rajeshkumar NV (2012) The gamma secretase inhibitor MRK-003 attenuates pancreatic cancer growth in preclinical models. Mol Cancer Ther 11:1999–2009. doi:10.1158/1535-7163.MCT-12-0017

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Kondratyev M, Kreso A, Hallett RM, Girgis-Gabardo A, Barcelon ME, Ilieva D, Ware C, Majumder PK, Hassell JA (2012) Gamma-secretase inhibitors target tumor-initiating cells in a mouse model of ERBB2 breast cancer. Oncogene 31:93–103. doi:10.1038/onc.2011.212

    Article  CAS  PubMed  Google Scholar 

  25. Ramakrishnan V, Ansell S, Haug J, Grote D, Kimlinger T, Stenson M, Timm M, Wellik L, Halling T, Rajkumar SV, Kumar S (2012) MRK003, a gamma-secretase inhibitor exhibits promising in vitro pre-clinical activity in multiple myeloma and non-Hodgkin’s lymphoma. Leukemia 26:340–348. doi:10.1038/leu.2011.192

    Article  CAS  PubMed  Google Scholar 

  26. Efferson CL, Winkelmann CT, Ware C, Sullivan T, Giampaoli S, Tammam J, Patel S, Mesiti G, Reilly JF, Gibson RE, Buser C, Yeatman T, Coppola D, Winter C, Clark EA, Draetta GF, Strack PR, Majumder PK (2010) Downregulation of Notch pathway by a gamma-secretase inhibitor attenuates AKT/mammalian target of rapamycin signaling and glucose uptake in an ERBB2 transgenic breast cancer model. Cancer Res 70:2476–2484. doi:10.1158/0008-5472.CAN-09-3114

    Article  CAS  PubMed  Google Scholar 

  27. Tammam J, Ware C, Efferson C, O’Neil J, Rao S, Qu X, Gorenstein J, Angagaw M, Kim H, Kenific C, Kunii K, Leach KJ, Nikov G, Zhao J, Dai X, Hardwick J, Scott M, Winter C, Bristow L, Elbi C, Reilly JF, Look T, Draetta G, Van der Ploeg L, Kohl NE, Strack PR, Majumder PK (2009) Down-regulation of the Notch pathway mediated by a gamma-secretase inhibitor induces anti-tumour effects in mouse models of T-cell leukaemia. Br J Pharmacol 158:1183–1195. doi:10.1111/j.1476-5381.2009.00389.x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Jin R, Nakada M, Teng L, Furuta T, Sabit H, Hayashi Y, Demuth T, Hirao A, Sato H, Zhao G, Hamada J (2013) Combination therapy using Notch and Akt inhibitors is effective for suppressing invasion but not proliferation in glioma cells. Neurosci Lett 534:316–321. doi:10.1016/j.neulet.2012.12.008

    Article  CAS  PubMed  Google Scholar 

  29. Chu Q, Orr BA, Semenkow S, Bar EE, Eberhart CG (2013) Prolonged inhibition of glioblastoma xenograft initiation and clonogenic growth following in vivo notch blockade. Clin Cancer Res 19:3224–3233. doi:10.1158/1078-0432.CCR-12-2119

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Saito N, Fu J, Zheng S, Yao J, Wang S, Liu DD, Yuan Y, Sulman EP, Lang FF, Colman H, Verhaak RG, Yung WK, Koul D (2014) A high notch pathway activation predicts response to gamma secretase inhibitors in proneural subtype of glioma tumor-initiating cells. Stem Cells 32:301–312. doi:10.1002/stem.1528

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Gu C, Banasavadi-Siddegowda YK, Joshi K, Nakamura Y, Kurt H, Gupta S, Nakano I (2013) Tumor-specific activation of the C-JUN/MELK pathway regulates glioma stem cell growth in a p53-dependent manner. Stem Cells 31:870–881. doi:10.1002/stem.1322

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Joshi K, Banasavadi-Siddegowda Y, Mo X, Kim SH, Mao P, Kig C, Nardini D, Sobol RW, Chow LM, Kornblum HI, Waclaw R, Beullens M, Nakano I (2013) MELK-dependent FOXM1 phosphorylation is essential for proliferation of glioma stem cells. Stem Cells 31:1051–1063. doi:10.1002/stem.1358

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Mao P, Joshi K, Li J, Kim SH, Li P, Santana-Santos L, Luthra S, Chandran UR, Benos PV, Smith L, Wang M, Hu B, Cheng SY, Sobol RW, Nakano I (2013) Mesenchymal glioma stem cells are maintained by activated glycolytic metabolism involving aldehyde dehydrogenase 1A3. Proc Natl Acad Sci USA 110:8644–8649. doi:10.1073/pnas.1221478110

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Miyazaki T, Pan Y, Joshi K, Purohit D, Hu B, Demir H, Mazumder S, Okabe S, Yamori T, Viapiano M, Shin-ya K, Seimiya H, Nakano I (2012) Telomestatin impairs glioma stem cell survival and growth through the disruption of telomeric G-quadruplex and inhibition of the proto-oncogene, c-Myb. Clin Cancer Res 18:1268–1280. doi:10.1158/1078-0432.CCR-11-1795

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Ikushima H, Todo T, Ino Y, Takahashi M, Miyazawa K, Miyazono K (2009) Autocrine TGF-beta signaling maintains tumorigenicity of glioma-initiating cells through Sry-related HMG-box factors. Cell Stem Cell 5:504–514. doi:10.1016/j.stem.2009.08.018

    Article  CAS  PubMed  Google Scholar 

  36. Muraguchi T, Tanaka S, Yamada D, Tamase A, Nakada M, Nakamura H, Hoshii T, Ooshio T, Tadokoro Y, Naka K, Ino Y, Todo T, Kuratsu J, Saya H, Hamada J, Hirao A (2011) NKX2.2 suppresses self-renewal of glioma-initiating cells. Cancer Res 71:1135–1145. doi:10.1158/0008-5472.CAN-10-2304

    Article  CAS  PubMed  Google Scholar 

  37. Yamada D, Hoshii T, Tanaka S, Hegazy AM, Kobayashi M, Tadokoro Y, Ohta K, Ueno M, Ali MA, Hirao A (2014) Loss of Tsc1 accelerates malignant gliomagenesis when combined with oncogenic signals. J Biochem. doi:10.1093/jb/mvt112

    PubMed  Google Scholar 

  38. Yan X, Ma L, Yi D, Yoon JG, Diercks A, Foltz G, Price ND, Hood LE, Tian Q (2011) A CD133-related gene expression signature identifies an aggressive glioblastoma subtype with excessive mutations. Proc Natl Acad Sci USA 108:1591–1596. doi:10.1073/pnas.1018696108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Lottaz C, Beier D, Meyer K, Kumar P, Hermann A, Schwarz J, Junker M, Oefner PJ, Bogdahn U, Wischhusen J, Spang R, Storch A, Beier CP (2010) Transcriptional profiles of CD133+ and CD133− glioblastoma-derived cancer stem cell lines suggest different cells of origin. Cancer Res 70:2030–2040. doi:10.1158/0008-5472.CAN-09-1707

    Article  CAS  PubMed  Google Scholar 

  40. Jijiwa M, Demir H, Gupta S, Leung C, Joshi K, Orozco N, Huang T, Yildiz VO, Shibahara I, de Jesus JA, Yong WH, Mischel PS, Fernandez S, Kornblum HI, Nakano I (2011) CD44v6 regulates growth of brain tumor stem cells partially through the AKT-mediated pathway. PLoS ONE 6:e24217. doi:10.1371/journal.pone.0024217

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Hurlbut GD, Kankel MW, Lake RJ, Artavanis-Tsakonas S (2007) Crossing paths with notch in the hyper-network. Curr Opin Cell Biol 19:166–175. doi:10.1016/j.ceb.2007.02.012

    Article  CAS  PubMed  Google Scholar 

  42. Olsauskas-Kuprys R, Zlobin A, Osipo C (2013) Gamma secretase inhibitors of notch signaling. OncoTargets Ther 6:943–955. doi:10.2147/ott.s33766

    CAS  Google Scholar 

  43. Anido J, Saez-Borderias A, Gonzalez-Junca A, Rodon L, Folch G, Carmona MA, Prieto-Sanchez RM, Barba I, Martinez-Saez E, Prudkin L, Cuartas I, Raventos C, Martinez-Ricarte F, Poca MA, Garcia-Dorado D, Lahn MM, Yingling JM, Rodon J, Sahuquillo J, Baselga J, Seoane J (2010) TGF-beta receptor inhibitors target the CD44(high)/Id1(high) glioma-initiating cell population in human glioblastoma. Cancer Cell 18:655–668. doi:10.1016/j.ccr.2010.10.023

    Article  CAS  PubMed  Google Scholar 

  44. Joo KM, Kim SY, Jin X, Song SY, Kong DS, Lee JI, Jeon JW, Kim MH, Kang BG, Jung Y, Jin J, Hong SC, Park WY, Lee DS, Kim H, Nam DH (2008) Clinical and biological implications of CD133-positive and CD133-negative cells in glioblastomas. Lab Investig 88:808–815. doi:10.1038/labinvest.2008.57

    Article  CAS  PubMed  Google Scholar 

  45. Liu G, Yuan X, Zeng Z, Tunici P, Ng H, Abdulkadir IR, Lu L, Irvin D, Black KL, Yu JS (2006) Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer 5:67. doi:10.1186/1476-4598-5-67

    Article  PubMed Central  PubMed  Google Scholar 

  46. Joseph JV, Balasubramaniyan V, Walenkamp A, Kruyt FA (2013) TGF-beta as a therapeutic target in high grade gliomas—promises and challenges. Biochem Pharmacol 85:478–485. doi:10.1016/j.bcp.2012.11.005

    Article  CAS  PubMed  Google Scholar 

  47. Sjolund J, Bostrom AK, Lindgren D, Manna S, Moustakas A, Ljungberg B, Johansson M, Fredlund E, Axelson H (2011) The notch and TGF-beta signaling pathways contribute to the aggressiveness of clear cell renal cell carcinoma. PLoS ONE 6:e23057. doi:10.1371/journal.pone.0023057

    Article  PubMed Central  PubMed  Google Scholar 

  48. Bhat KP, Balasubramaniyan V, Vaillant B, Ezhilarasan R, Hummelink K, Hollingsworth F, Wani K, Heathcock L, James JD, Goodman LD, Conroy S, Long L, Lelic N, Wang S, Gumin J, Raj D, Kodama Y, Raghunathan A, Olar A, Joshi K, Pelloski CE, Heimberger A, Kim SH, Cahill DP, Rao G, Den Dunnen WF, Boddeke HW, Phillips HS, Nakano I, Lang FF, Colman H, Sulman EP, Aldape K (2013) Mesenchymal differentiation mediated by NF-kappaB promotes radiation resistance in glioblastoma. Cancer Cell 24:331–346. doi:10.1016/j.ccr.2013.08.001

    Article  CAS  PubMed  Google Scholar 

  49. Takebe N, Nguyen D, Yang SX (2014) Targeting notch signaling pathway in cancer: clinical development advances and challenges. Pharmacol Ther 141:140–149. doi:10.1016/j.pharmthera.2013.09.005

    Article  CAS  PubMed  Google Scholar 

  50. Wang J, Wakeman TP, Lathia JD, Hjelmeland AB, Wang XF, White RR, Rich JN, Sullenger BA (2010) Notch promotes radioresistance of glioma stem cells. Stem Cells 28:17–28. doi:10.1002/stem.261

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Funding

This work was supported by Grant-in-Aid for Scientific Research (C-23592117 to M.N.) from the Japan Society for the Promotion of Science and Extramural Collaborative Research Grant of Cancer Research Institute, Kanazawa University (to A.H, and M.M.), Takeda Science Foundation (to M.N.), a Grant-in-Aid for Scientific Research on Innovative Areas and the Project for Development of Innovative Research on Cancer Therapeutics (to A.H and T.T.) and Grant-in-Aid for Scientific Research on Innovative Areas from the Ministry of Education, Culture, Sports, Science and Technology, Japan (to A.H.).

Conflict of interest

All authors disclosed no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsutoshi Nakada.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 1033 kb)

Supplementary material 2 (DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanaka, S., Nakada, M., Yamada, D. et al. Strong therapeutic potential of γ-secretase inhibitor MRK003 for CD44-high and CD133-low glioblastoma initiating cells. J Neurooncol 121, 239–250 (2015). https://doi.org/10.1007/s11060-014-1630-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-014-1630-z

Keywords

Navigation