Skip to main content
Log in

A complex mechanism for HDGF-mediated cell growth, migration, invasion, and TMZ chemosensitivity in glioma

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

A Correction to this article was published on 01 September 2020

This article has been updated

Abstract

HDGF is overexpressed in gliomas as compared to normal brain. We therefore analyzed the molecular mechanisms of HDGF action in gliomas. HDGF was downregulated in normal brain tissue as compared to glioma specimens at both the mRNA and the protein levels. In glioma samples, increased HDGF expression was associated with disease progression. Knocking down HDGF expression not only significantly decreased cellular proliferation, migration, invasion, and tumorigenesis, but also markedly enhanced TMZ-induced cytotoxicity and apoptosis in glioma cells. Mechanistic analyses revealed that CCND1, c-myc, and TGF-β were downregulated after stable HDGF knockdown in the U251 and U87 glioma cells. HDGF knockdown restored E-cadherin expression and suppressed mesenchymal cell markers such as vimentin, β-catenin, and N-cadherin. The expression of cleaved caspase-3 increased, while Bcl-2 decreased in each cell line following treatment with shHDGF and TMZ, as compared to TMZ alone. Furthermore, RNAi-based knockdown study revealed that HDGF is probably involved in the activation of both the PI3K/Akt and the TGF-β signaling pathways. Together, our data suggested that HDGF regulates glioma cell growth, apoptosis and epithelial–mesenchymal transition (EMT) probably through the Akt and the TGF-β signaling pathways. These results provide evidence that targeting HDGF or its downstream targets may lead to novel therapies for gliomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

  • 08 October 2020

    In the original publication, there are errors in Fig.��3D and Fig.��5C and are corrected as follows.

References

  1. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, Kleihues P (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114:97–109

    Article  PubMed Central  PubMed  Google Scholar 

  2. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996

    Article  CAS  PubMed  Google Scholar 

  3. Wang Y, Jiang T (2013) Understanding high grade glioma: molecular mechanism, therapy and comprehensive management. Cancer Lett 331:139–146

    Article  CAS  PubMed  Google Scholar 

  4. Bleeker FE, Molenaar RJ, Leenstra S (2012) Recent advances in the molecular understanding of glioblastoma. J Neurooncol 108:11–27

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Nakamura H, Izumoto Y, Kambe H, Kuroda T, Mori T, Kawamura K, Yamamoto H, Kishimoto T (1994) Molecular cloning of complementary DNA for a novel human hepatoma-derived growth factor. Its homology with high mobility group-1 protein. J Biol Chem 269:25143–25149

    CAS  PubMed  Google Scholar 

  6. Everett AD, Lobe DR, Matsumura ME, Nakamura H, McNamara CA (2000) Hepatoma-derived growth factor stimulates smooth muscle cell growth and is expressed in vascular development. J Clin Invest 105:567–575

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Enomoto H, Yoshida K, Kishima Y, Okuda Y, Nakamura H (2002) Participation of hepatoma-derived growth factor in the regulation of fetal hepatocyte proliferation. J Gastroenterol 37(Suppl 14):158–161

    Article  CAS  PubMed  Google Scholar 

  8. Oliver JA, Al-Awqati Q (1998) An endothelial growth factor involved in rat renal development. J Clin Invest 102:1208–1219

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Kishima Y, Yamamoto H, Izumoto Y, Yoshida K, Enomoto H, Yamamoto M, Kuroda T, Ito H, Yoshizaki K, Nakamura H (2002) Hepatoma-derived growth factor stimulates cell growth after translocation to the nucleus by nuclear localization signals. J Biol Chem 277:10315–10322

    Article  CAS  PubMed  Google Scholar 

  10. Matsuyama A, Inoue H, Shibuta K, Tanaka Y, Barnard GF, Sugimachi K, Mori M (2001) Hepatoma-derived growth factor is associated with reduced sensitivity to irradiation in esophageal cancer. Cancer Res 61:5714–5717

    CAS  PubMed  Google Scholar 

  11. Kishima Y, Yoshida K, Enomoto H, Yamamoto M, Kuroda T, Okuda Y, Uyama H, Nakamura H (2002) Antisense oligonucleotides of hepatoma-derived growth factor (HDGF) suppress the proliferation of hepatoma cells. Hepatogastroenterology 49:1639–1644

    CAS  PubMed  Google Scholar 

  12. Yamamoto S, Tomita Y, Hoshida Y, Takiguchi S, Fujiwara Y, Yasuda T, Doki Y, Yoshida K, Aozasa K, Nakamura H, Monden M (2006) Expression of hepatoma-derived growth factor is correlated with lymph node metastasis and prognosis of gastric carcinoma. Clin Cancer Res 12:117–122

    Article  CAS  PubMed  Google Scholar 

  13. Zhang J, Ren H, Yuan P, Lang W, Zhang L, Mao L (2006) Down-regulation of hepatoma-derived growth factor inhibits anchorage-independent growth and invasion of non-small cell lung cancer cells. Cancer Res 66:18–23

    Article  CAS  PubMed  Google Scholar 

  14. Uyama H, Tomita Y, Nakamura H, Nakamori S, Zhang B, Hoshida Y, Enomoto H, Okuda Y, Sakon M, Aozasa K, Kawase I, Hayashi N, Monden M (2006) Hepatoma-derived growth factor is a novel prognostic factor for patients with pancreatic cancer. Clin Cancer Res 12:6043–6048

    Article  CAS  PubMed  Google Scholar 

  15. Chang KC, Tai MH, Lin JW, Wang CC, Huang CC, Hung CH, Chen CH, Lu SN, Lee CM, Changchien CS, Hu TH (2007) Hepatoma-derived growth factor is a novel prognostic factor for gastrointestinal stromal tumors. Int J Cancer 121:1059–1065

    Article  CAS  PubMed  Google Scholar 

  16. Zhou Y, Zhou N, Fang W, Huo J (2010) Overexpressed HDGF as an independent prognostic factor is involved in poor prognosis in Chinese patients with liver cancer. Diagn Pathol 5:58

    Article  PubMed Central  PubMed  Google Scholar 

  17. Wang S, Fang W (2011) Increased expression of hepatoma-derived growth factor correlates with poor prognosis in human nasopharyngeal carcinoma. Histopathology 58:217–224

    Article  PubMed  Google Scholar 

  18. Hsu SS, Chen CH, Liu GS, Tai MH, Wang JS, Wu JC, Kung ML, Chan EC, Liu LF (2012) Tumorigenesis and prognostic role of hepatoma-derived growth factor in human gliomas. J Neurooncol 107:101–109

    Article  CAS  PubMed  Google Scholar 

  19. Zhang A, Long W, Guo Z, Guo Z, Cao BB (2012) Downregulation of hepatoma-derived growth factor suppresses the malignant phenotype of U87 human glioma cells. Oncol Rep 28:62–68

    CAS  PubMed  Google Scholar 

  20. Qi S, Song Y, Peng Y, Wang H, Long H, Yu X, Li Z, Fang L, Wu A, Luo W, Zhen Y, Zhou Y, Chen Y, Mai C, Liu Z, Fang W (2012) ZEB2 mediates multiple pathways regulating cell proliferation, migration, invasion, and apoptosis in glioma. PLoS One 7:e38842

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Liu Z, Li L, Yang Z, Luo W, Li X, Yang H, Yao K, Wu B, Fang W (2010) Increased expression of MMP9 is correlated with poor prognosis of nasopharyngeal carcinoma. BMC Cancer 10:270

    Article  PubMed Central  PubMed  Google Scholar 

  22. Zhen Y, Ye Y, Yu X, Mai C, Zhou Y, Chen Y, Yang H, Lyu X, Song Y, Wu Q, Fu Q, Zhao M, Hua S, Wang H, Liu Z, Zhang Y, Fang W (2013) Reduced CTGF expression promotes cell growth, migration, and invasion in nasopharyngeal carcinoma. PLoS One 8:e64976

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Crossin KL, Tai MH, Krushel LA, Mauro VP, Edelman GM (1997) Glucocorticoid receptor pathways are involved in the inhibition of astrocyte proliferation. Proc Natl Acad Sci USA 94:2687–2692

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Zhao J, Yu H, Lin L, Tu J, Cai L, Chen Y, Zhong F, Lin C, He F, Yang P (2011) Interactome study suggests multiple cellular functions of hepatoma-derived growth factor (HDGF). J Proteomics 75:588–602

    Article  CAS  PubMed  Google Scholar 

  25. Hu TH, Huang CC, Liu LF, Lin PR, Liu SY, Chang HW, Changchien CS, Lee CM, Chuang JH, Tai MH (2003) Expression of hepatoma-derived growth factor in hepatocellular carcinoma. Cancer 98:1444–1456

    Article  CAS  PubMed  Google Scholar 

  26. Yoshida K, Tomita Y, Okuda Y, Yamamoto S, Enomoto H, Uyama H, Ito H, Hoshida Y, Aozasa K, Nagano H, Sakon M, Kawase I, Monden M, Nakamura H (2006) Hepatoma-derived growth factor is a novel prognostic factor for hepatocellular carcinoma. Ann Surg Oncol 13:159–167

    Article  PubMed  Google Scholar 

  27. Chen SC, Kung ML, Hu TH, Chen HY, Wu JC, Kuo HM, Tsai HE, Lin YW, Wen ZH, Liu JK, Yeh MH, Tai MH (2012) Hepatoma-derived growth factor regulates breast cancer cell invasion by modulating epithelial–mesenchymal transition. J Pathol 228:158–169

    Article  CAS  PubMed  Google Scholar 

  28. Yamamoto T, Nakamura H, Liu W, Cao K, Yoshikawa S, Enomoto H, Iwata Y, Koh N, Saito M, Imanishi H, Shimomura S, Iijima H, Hada T, Nishiguchi S (2009) Involvement of hepatoma-derived growth factor in the growth inhibition of hepatocellular carcinoma cells by vitamin K(2). J Gastroenterol 44:228–235

    Article  CAS  PubMed  Google Scholar 

  29. Chen X, Yun J, Fei F, Yi J, Tian R, Li S, Gan X (2012) Prognostic value of nuclear hepatoma-derived growth factor (HDGF) localization in patients with breast cancer. Pathol Res Pract 208:437–443

    Article  CAS  PubMed  Google Scholar 

  30. Stevens B, Fields RD (2002) Regulation of the cell cycle in normal and pathological glia. Neuroscientist 8:93–97

    Article  CAS  PubMed  Google Scholar 

  31. Liu P, Cheng H, Roberts TM, Zhao JJ (2009) Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov 8:627–644

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Yuan TL, Cantley LC (2008) PI3K pathway alterations in cancer: variations on a theme. Oncogene 27:5497–5510

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Li GQ, Zhang Y, Liu D, Qian YY, Zhang H, Guo SY, Sunagawa M, Hisamitsu T, Liu YQ (2013) PI3 kinase/Akt/HIF-1alpha pathway is associated with hypoxia-induced epithelial-mesenchymal transition in fibroblast-like synoviocytes of rheumatoid arthritis. Mol Cell Biochem 372:221–231

    Article  CAS  PubMed  Google Scholar 

  34. Han L, Yang Y, Yue X, Huang K, Liu X, Pu P, Jiang H, Yan W, Jiang T, Kang C (2010) Inactivation of PI3K/AKT signaling inhibits glioma cell growth through modulation of beta-catenin-mediated transcription. Brain Res 1366:9–17

    Article  CAS  PubMed  Google Scholar 

  35. Miyazono K, Ehata S, Koinuma D (2012) Tumor-promoting functions of transforming growth factor-beta in progression of cancer. Ups J Med Sci 117:143–152

    Article  PubMed Central  PubMed  Google Scholar 

  36. Kaminska B, Kocyk M, Kijewska M (2013) TGF beta signaling and its role in glioma pathogenesis. Adv Exp Med Biol 986:171–187

    Article  CAS  PubMed  Google Scholar 

  37. Jennings MT, Pietenpol JA (1998) The role of transforming growth factor beta in glioma progression. J Neurooncol 36:123–140

    Article  CAS  PubMed  Google Scholar 

  38. Wick W, Platten M, Weller M (2001) Glioma cell invasion: regulation of metalloproteinase activity by TGF-beta. J Neurooncol 53:177–185

    Article  CAS  PubMed  Google Scholar 

  39. Carlson ME, Hsu M, Conboy IM (2008) Imbalance between pSmad3 and Notch induces CDK inhibitors in old muscle stem cells. Nature 454:528–532

    Article  CAS  PubMed  Google Scholar 

  40. Fischer AN, Fuchs E, Mikula M, Huber H, Beug H, Mikulits W (2007) PDGF essentially links TGF-beta signaling to nuclear beta-catenin accumulation in hepatocellular carcinoma progression. Oncogene 26:3395–3405

    Article  CAS  PubMed  Google Scholar 

  41. Kahlert UD, Nikkhah G, Maciaczyk J (2013) Epithelial-to-mesenchymal(-like) transition as a relevant molecular event in malignant gliomas. Cancer Lett 331:131–138

    Article  CAS  PubMed  Google Scholar 

  42. Wen W, Ding J, Sun W, Fu J, Chen Y, Wu K, Ning B, Han T, Huang L, Chen C, Xie D, Li Z, Feng G, Wu M, Xie W, Wang H (2012) Cyclin G1-mediated epithelial-mesenchymal transition via phosphoinositide 3-kinase/Akt signaling facilitates liver cancer progression. Hepatology 55:1787–1798

    Article  CAS  PubMed  Google Scholar 

  43. Yoo YA, Kang MH, Lee HJ, Kim BH, Park JK, Kim HK, Kim JS, Oh SC (2011) Sonic hedgehog pathway promotes metastasis and lymphangiogenesis via activation of Akt, EMT, and MMP-9 pathway in gastric cancer. Cancer Res 71:7061–7070

    Article  CAS  PubMed  Google Scholar 

  44. Thiery JP, Acloque H, Huang RY, Nieto MA (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139:871–890

    Article  CAS  PubMed  Google Scholar 

  45. Xu J, Lamouille S, Derynck R (2009) TGF-beta-induced epithelial to mesenchymal transition. Cell Res 19:156–172

    Article  CAS  PubMed  Google Scholar 

  46. Heldin CH, Vanlandewijck M, Moustakas A (2012) Regulation of EMT by TGF-beta in cancer. FEBS Lett 586:1959–1970

    Article  CAS  PubMed  Google Scholar 

  47. Hegi ME, Liu L, Herman JG, Stupp R, Wick W, Weller M, Mehta MP, Gilbert MR (2008) Correlation of O6-methylguanine methyltransferase (MGMT) promoter methylation with clinical outcomes in glioblastoma and clinical strategies to modulate MGMT activity. J Clin Oncol 26:4189–4199

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by National Nature Science Fund of China (No. 81372692) (http://www.nsfc.gov.cn), Natural Science Fund of Guangdong Province (No. S2013010014886) (http://www.gdstc.gov.cn), Medical Scientific Research Fund of Guangdong Province (No. B2013238) (http://www.medste.gd.cn), Scientific Research initiative Project Fund of Southern Medical University (No. B1012032) (http://www.fimmu.com) and President Fund of Nanfang Hospital (2011C007, 2012C011) (http://www.nfyy.com). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Conflict of interest

The authors have declared that no conflict of interest exist.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhen Liu, Weiyi Fang or Songtao Qi.

Additional information

Ye Song, Zheng Hu and Hao Long have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 109 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Y., Hu, Z., Long, H. et al. A complex mechanism for HDGF-mediated cell growth, migration, invasion, and TMZ chemosensitivity in glioma. J Neurooncol 119, 285–295 (2014). https://doi.org/10.1007/s11060-014-1512-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-014-1512-4

Keywords

Navigation