Skip to main content

Advertisement

Log in

MicroRNA-183 upregulates HIF-1α by targeting isocitrate dehydrogenase 2 (IDH2) in glioma cells

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

MicroRNAs (miRs) are small, non-coding RNAs that regulate gene expression and contribute to cell proliferation, differentiation and metabolism. Our previous study revealed the extensive modulation of a set of miRs in malignant glioma. In that study, miR microarray analysis demonstrated the upregulation of microRNA-183 (miR-183) in glioblastomas. Therefore, we examined the expression levels of miR-183 in various types of gliomas and the association of miR-183 with isocitrate dehydrogenase 2 (IDH2), which has complementary sequences to miR-183 in its 3′-untranslated region (3′UTR). In present study, we used real-time PCR analysis to demonstrate that miR-183 is upregulated in the majority of high-grade gliomas and glioma cell lines compared with peripheral, non-tumorous brain tissue. The mRNA and protein expression levels of IDH2 are downregulated via the overexpression of miR-183 mimic RNA in glioma cells. Additionally, IDH2 mRNA expression is upregulated in glioma cells expressing anti-miR-183. We verified that miR-183 directly affects IDH2 mRNA levels in glioma cells using luciferase assays. In malignant glioma specimens, the expression levels of IDH2 were lower in tumors than in the peripheral, non-tumorous brain tissues. HIF-1α levels were upregulated in glioma cells following transfection with miR-183 mimic RNA or IDH2 siRNA. Moreover, vascular endothelial growth factor and glucose transporter 1, which are downstream molecules of HIF-1α, were upregulated in cells transfected with miR-183 mimic RNA. These results suggest that miR-183 upregulation in malignant gliomas induces HIF-1α expression by targeting IDH2 and may play a role in glioma biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ambros V (2004) The functions of animal microRNAs. Nature 431:350–355

    Article  PubMed  CAS  Google Scholar 

  2. Mendell JT (2005) MicroRNAs: critical regulators of development, cellular physiology and malignancy. Cell Cycle 4:1179–1184

    Article  PubMed  CAS  Google Scholar 

  3. Zhou X, Ren Y, Han L, Mei M, Xu P, Zhang CZ, Wang GX, Jia ZF, Pu PY, Kang CS (2010) Role of the AKT pathway in microRNA expression of human U251 glioblastoma cells. Int J Oncol 36:665–672

    PubMed  CAS  Google Scholar 

  4. John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS (2004) Human MicroRNA targets. PLoS Biol 2:e363

    Article  PubMed  Google Scholar 

  5. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  PubMed  CAS  Google Scholar 

  6. Shenouda SK, Alahari SK (2009) MicroRNA function in cancer: oncogene or a tumor suppressor? Cancer Metastasis Rev 28:369–378

    Article  PubMed  CAS  Google Scholar 

  7. Silber J, James CD, Hodgson JG (2009) MicroRNAs in gliomas: small regulators of a big problem. Neuromolecular Med 11:208–222

    Article  PubMed  CAS  Google Scholar 

  8. Novakova J, Slaby O, Vyzula R, Michalek J (2009) MicroRNA involvement in glioblastoma pathogenesis. Biochem Biophys Res Commun 386:1–5

    Article  PubMed  CAS  Google Scholar 

  9. Chiocca EA, Lawler SE (2010) The many functions of microRNAs in glioblastoma. World Neurosurg 73:598–601

    Article  PubMed  Google Scholar 

  10. Dong H, Siu H, Luo L, Fang X, Jin L, Xiong M (2010) Investigation gene and microRNA expression in glioblastoma. BMC Genomics 11(Suppl 3):S16

    Article  PubMed  CAS  Google Scholar 

  11. Kim TM, Huang W, Park R, Park PJ, Johnson MD (2011) A developmental taxonomy of glioblastoma defined and maintained by MicroRNAs. Cancer Res 71:3387–3399

    Article  PubMed  CAS  Google Scholar 

  12. Sasayama T, Nishihara M, Kondoh T, Hosoda K, Kohmura E (2009) MicroRNA-10b is overexpressed in malignant glioma and associated with tumor invasive factors, uPAR and RhoC. Int J Cancer 125:1407–1413

    Article  PubMed  CAS  Google Scholar 

  13. Ciafrè SA, Galardi S, Mangiola A, Ferracin M, Liu CG, Sabatino G, Negrini M, Maira G, Croce CM, Farace MG (2005) Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem Biophys Res Commun 334:1351–1358

    Article  PubMed  Google Scholar 

  14. Chan JA, Krichevsky AM, Kosik KS (2005) MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 65:6029–6033

    Article  PubMed  CAS  Google Scholar 

  15. Lavon I, Zrihan D, Granit A, Einstein O, Fainstein N, Cohen MA, Cohen MA, Zelikovitch B, Shoshan Y, Spektor S, Reubinoff BE, Felig Y, Gerlitz O, Ben-Hur T, Smith Y, Siegal T (2010) Gliomas display a microRNA expression profile reminiscent of neural precursor cells. Neuro Oncol 12:422–433

    Article  PubMed  CAS  Google Scholar 

  16. Gabriely G, Yi M, Narayan RS, Niers JM, Wurdinger T, Imitola J, Ligon KL, Kesari S, Esau C, Stephens RM, Tannous BA, Krichevsky AM (2011) Human glioma growth is controlled by microRNA-10b. Cancer Res 71:3563–3572

    Article  PubMed  CAS  Google Scholar 

  17. Bandrés E, Cubedo E, Agirre X, Malumbres R, Zárate R, Ramirez N, Abajo A, Navarro A, Moreno I, Monzó M, García-Foncillas J (2006) Identification by real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues. Mol Cancer 5:29

    Article  PubMed  Google Scholar 

  18. Li J, Fu H, Xu C, Tie Y, Xing R, Zhu J, Qin Y, Sun Z, Zheng X (2010) miR-183 inhibits TGF-beta1-induced apoptosis by downregulation of PDCD4 expression in human hepatocellular carcinoma cells. BMC Cancer 10:354

    Article  PubMed  Google Scholar 

  19. Li G, Luna C, Qiu J, Epstein DL, Gonzalez P (2010) Targeting of integrin beta1 and kinesin 2alpha by microRNA 183. J Biol Chem 285:5461–5471

    Article  PubMed  CAS  Google Scholar 

  20. Sarver AL, Li L, Subramanian S (2010) MicroRNA miR-183 functions as an oncogene by targeting the transcription factor EGR1 and promoting tumor cell migration. Cancer Res 70:9570–9580

    Article  PubMed  CAS  Google Scholar 

  21. Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033

    Article  PubMed  CAS  Google Scholar 

  22. Gross S, Cairns RA, Minden MD, Driggers EM, Bittinger MA, Jang HG, Sasaki M, Jin S, Schenkein DP, Su SM, Dang L, Fantin VR, Mak TW (2010) Cancer-associated metabolite 2-hydroxyglutarate accumulates in acute myelogenous leukemia with isocitrate dehydrogenase 1 and 2 mutations. J Exp Med 207:339–344

    Article  PubMed  CAS  Google Scholar 

  23. Fu Y, Huang R, Du J, Yang R, An N, Liang A (2010) Glioma-derived mutations in IDH: from mechanism to potential therapy. Biochem Biophys Res Commun 397:127–130

    Article  PubMed  CAS  Google Scholar 

  24. Yen KE, Bittinger MA, Su SM, Fantin VR (2010) Cancer-associated IDH mutations: biomarker and therapeutic opportunities. Oncogene 29:6409–6417

    Article  PubMed  CAS  Google Scholar 

  25. Weller M, Wick W, von Deimling A (2011) Isocitrate dehydrogenase mutations: a challenge to traditional views on the genesis and malignant progression of gliomas. Glia 59:1200–1204

    Article  PubMed  Google Scholar 

  26. Kloosterhof NK, Bralten LB, Dubbink HJ, French PJ, van den Bent MJ (2011) Isocitrate dehydrogenase-1 mutations: a fundamentally new understanding of diffuse glioma? Lancet Oncol 12:83–91

    Article  PubMed  CAS  Google Scholar 

  27. Parsons DW, Jones S, Zhang X et al (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321:1807–1812

    Article  PubMed  CAS  Google Scholar 

  28. Yan H, Parsons DW, Jin G et al (2009) IDH1 and IDH2 mutations in gliomas. N Engl J Med 360:765–773

    Article  PubMed  CAS  Google Scholar 

  29. Ichimura K, Pearson DM, Kocialkowski S, Bäcklund LM, Chan R, Jones DT, Collins VP (2009) IDH1 mutations are present in the majority of common adult gliomas but rare in primary glioblastomas. Neuro Oncol 11:341–347

    Article  PubMed  CAS  Google Scholar 

  30. Kang MR, Kim MS, Oh JE, Kim YR, Song SY, Seo SI, Lee JY, Yoo NJ, Lee SH (2009) Mutational analysis of IDH1 codon 132 in glioblastomas and other common cancers. Int J Cancer 125:353–355

    Article  PubMed  CAS  Google Scholar 

  31. Mardis ER, Ding L, Dooling DJ et al (2009) Recurring mutations found by sequencing an acute myeloid leukemia genome. N Engl J Med 361:1058–1066

    Article  PubMed  CAS  Google Scholar 

  32. Amary MF, Bacsi K, Maggiani F et al (2011) IDH1 and IDH2 mutations are frequent events in central chondrosarcoma and central and periosteal chondromas but not in other mesenchymal tumours. J Pathol 224:334–343

    Article  PubMed  CAS  Google Scholar 

  33. Zhao S, Lin Y, Xu W et al (2009) Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1alpha. Science 324:261–265

    Article  PubMed  CAS  Google Scholar 

  34. Lowery AJ, Miller N, Dwyer RM, Kerin MJ (2010) Dysregulated miR-183 inhibits migration in breast cancer cells. BMC Cancer 10:502

    Article  PubMed  Google Scholar 

  35. Han Y, Chen J, Zhao X et al (2011) MicroRNA expression signatures of bladder cancer revealed by deep sequencing. PLoS ONE 6:e18286

    Article  PubMed  CAS  Google Scholar 

  36. Zhu W, Liu X, He J, Chen D, Hunag Y, Zhang YK (2011) Overexpression of members of the microRNA-183 family is a risk factor for lung cancer: a case control study. BMC Cancer 11:393

    Article  PubMed  CAS  Google Scholar 

  37. Wang G, Mao W, Zheng S (2008) MicroRNA-183 regulates Ezrin expression in lung cancer cells. FEBS Lett 582:3663–3668

    Article  PubMed  CAS  Google Scholar 

  38. Ward PS, Patel J, Wise DR et al (2010) The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Cancer Cell 17:225–234

    Article  PubMed  CAS  Google Scholar 

  39. Vohwinkel CU, Lecuona E, Sun H, Sommer N, Vadász I, Chandel NS, Sznajder JI (2011) Elevated CO(2) levels cause mitochondrial dysfunction and impair cell proliferation. J Biol Chem 286:37067–37076

    Article  PubMed  CAS  Google Scholar 

  40. Semenza GL (2009) Regulation of oxygen homeostasis by hypoxia-inducible factor 1. Physiology (Bethesda) 24:97–106

    Article  CAS  Google Scholar 

  41. Majmundar AJ, Wong WJ, Simon MC (2010) Hypoxia-inducible factors and the response to hypoxic stress. Mol Cell 40:294–309

    Article  PubMed  CAS  Google Scholar 

  42. Harris AL (2002) Hypoxia—a key regulatory factor in tumour growth. Nat Rev Cancer 2:38–47

    Article  PubMed  CAS  Google Scholar 

  43. Denko NC (2008) Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat Rev Cancer 8:705–713

    Article  PubMed  CAS  Google Scholar 

  44. Hatzivassiliou G, Zhao F, Bauer DE et al (2005) ATP citrate lyase inhibition can suppress tumor cell growth. Cancer Cell 8:311–321

    Article  PubMed  CAS  Google Scholar 

  45. Bauer DE, Hatzivassiliou G, Zhao F, Andreadis C, Thompson CB (2005) ATP citrate lyase is an important component of cell growth and transformation. Oncogene 24:6314–6322

    Article  PubMed  CAS  Google Scholar 

  46. Menendez JA, Lupu R (2007) Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer 7:763–777

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Mitsuharu Endo and Ryosuke Doi (Department of Physiology and Cell Biology, Kobe University, Japan) for helping with the luciferase reporter assays. We also thank Mariko Ueda for helping with the immunocytochemical analysis. This work was supported in part by a Grant-in-Aid for Scientific Research to Takashi Sasayama (22591610) and Katsu Mizukawa (22791344) from the Japanese Ministry of Education, Culture, Sports, Science and Technology.

Conflicts of interest

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Sasayama.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanaka, H., Sasayama, T., Tanaka, K. et al. MicroRNA-183 upregulates HIF-1α by targeting isocitrate dehydrogenase 2 (IDH2) in glioma cells. J Neurooncol 111, 273–283 (2013). https://doi.org/10.1007/s11060-012-1027-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-012-1027-9

Keywords

Navigation