Skip to main content
Log in

Dormancy release of Cotinus coggygria seeds under a pre-cold moist stratification: an endogenous abscisic acid/gibberellic acid and comparative proteomic analysis

  • Published:
New Forests Aims and scope Submit manuscript

Abstract

Seed dormancy is an adaptive trait that widely exists in angiosperms and gymnosperms. The mechanisms for the release of seed dormancy have been less well studied. Using smoke tree (Cotinus coggygria var. Cinerea Engler) seeds, the effect of cold moist stratification (5 °C, 18.5 % humidity and 0–75 days) on dormancy release, changes of respiration rate, ABA and GA3 content, and the differentially expressed proteins during dormancy release were investigated. Seed dormancy was released during cold moist stratification, seed respiration rate was increased while both ABA and GA3 concentrations were decreased. A total of 28 protein spots with significant changes in relative expression abundance were detected by two-dimensional electrophoresis. Among these protein spots, four proteins of ATPase β subunit, heat-shock cognate protein 70, aspartic proteinase 1 and actin were successfully identified by the matrix assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry. These four proteins were all down-expressed during dormancy release, and their possible implications for dormancy release of C. coggygria seeds was discussed. A better understanding of seed dormancy release and germination has practical benefits to seedling production for forest regeneration purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ali-Rachedi S, Bouinot D, Wagner MH, Bonnet M, Sotta B, Grappin P, Jullien M (2004) Changes in endogenous abscisic acid levels during dormancy release and maintenance of mature seeds: studies with the Cape Verde Islands ecotype, the dormant model of Arabidopsis thaliana. Planta 219:479–488

    Article  CAS  PubMed  Google Scholar 

  • Amzel LM, Bianchet MA, Leyva JA (2003) Understanding ATP synthesis: structure and mechanism of the F1-ATPase. Mol Membr Biol 20:27–33

    Article  PubMed  Google Scholar 

  • An CI, Fukusaki E, Kobayashi A (2002) Aspartic proteinases are expressed in pitchers of the carnivorous plant Nepenthes alata Blanco. Planta 214:661–667

    Article  CAS  PubMed  Google Scholar 

  • Baskin CC, Baskin JM (1998) Seeds: ecology, biogeography and evolution of dormancy and germination. Academic Press, San Diego

    Google Scholar 

  • Baskin CC, Baskin JM (2004) A classification system for seed dormancy. Seed Sci Res 14:1–16

    Google Scholar 

  • Bewley JD, Black M (1994) Seeds: physiology of development and germination. Plenum Press, New York

    Book  Google Scholar 

  • Bhalerao R, Keskitalo J, Sterky F, Erlandsson R, Bjorkbacka H, Birve SJ, Karlsson J, Gardestrom P, Gustafsson P, Lundeberg J, Jansson S (2003) Gene expression in autumn leaves. Plant Physiol 131:430–442

    Article  PubMed  PubMed Central  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Budiman MA, Mao L, Wood TC, Wing RA (2000) A deep-coverage tomato BAC library and prospects toward development of an STC framework for genome sequencing. Genome Res 10(1):129–136

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cadman CSC, Toorop PE, Hilhorst HWM, Finch-Savage WE (2006) Gene expression profiles of Arabidopsis Cvi seed during cycling through dormant and non-dormant states indicate a common underlying dormancy control mechanism. Plant J 46:805–822

    Article  CAS  PubMed  Google Scholar 

  • Chibani K, Ali-Rachedi S, Job C, Job D, Jullien M, Grappin P (2006) Proteomic analysis of seed dormancy in Arabidopsis. Plant Physiol 142:1493–1510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Ruijter NCA, Emons AMC (1999) Actin-binding proteins in plant cells. Plant Biol 1:26–35

    Article  Google Scholar 

  • Deng ZJ, Cheng HY, Song SQ (2010) Effects of temperature, scarification, dry storage, stratification, phytohormone and light on dormancy-breaking and germination of Cotinus coggygria var. cinerea (Anacardiaceae) seeds. Seed Sci Technol 38:572–584

    Article  Google Scholar 

  • Derkx MPM, Vermeer E, Karssen CM (1994) Gibberellins in seeds of Arabidopsis thaliana: biological activities, identification and effects of light and chilling on endogenous levels. J Plant Growth Regul 15:223–234

    Article  CAS  Google Scholar 

  • Gubler F, Millar AA, Jacobsen JV (2005) Dormancy release, ABA and pre-harvest sprouting. Curr Opin Plant Biol 8:183–187

    Article  CAS  PubMed  Google Scholar 

  • Guevara MG, Daleo GR, Oliva CR (2001) Purification and characterization of an aspartic protease from potato leaves. Physiol Planta 112:321–326

    Article  CAS  Google Scholar 

  • Guner S, Tilki F (2009) Dormancy breaking in Cotinus coggygria Scop. seeds of three provenances. Sci Res Essays 4:73–77

    Google Scholar 

  • Hilhorst HWM (2007) Definitions and hypotheses of seed dormancy. In: Bradford K, Nonogaki H (eds) Seed development, dormancy and germination. Annual plant reviews 27. Blackwell Publishing, Oxford, pp 50–71

    Chapter  Google Scholar 

  • Karssen CM, Laçka E (1986) A revision of the hormone balance theory of seed dormancy: studies on gibberellin and/or abscisic acid-deficient mutants of Arabidopsis thaliana. In: Bopp M (ed) Plant growth substances. Springer, Berlin, pp 315–323

    Google Scholar 

  • Kermode AR (2005) Role of abscisic acid in seed dormancy. J Plant Growth Regul 24:319–344

    Article  CAS  Google Scholar 

  • Khan AA (1982) The physiology and biochemistry of seed development, dormancy and germination. Elsevier Biomedical Press, Amsterdam, p 280

    Google Scholar 

  • Kiang JG, Tsokos GC (1998) Heat shock protein 70 kDa: molecular biology, biochemistry, and physiology. Pharmacol Ther 80:183–201

    Article  CAS  PubMed  Google Scholar 

  • Krawiarz K, Szczotka Z (2000) Activity of ATPases during dormancy breaking in Norway maple (Acer platanoides L.) seeds. Acta Soc Bot Poloniae 69:119–121

    Article  CAS  Google Scholar 

  • Krawiarz K, Szczotka Z (2005) Adenine nucleotides and energy charge during dormancy breaking in embryo axes of Acer platanoides and Fagus sylvatica seeds. Acta Physiol Plant 27:455–461

    Article  CAS  Google Scholar 

  • Le Page-Degivry MT, Bianco J, Barthe P, Garello G (1996) Change in hormone sensitivity in relation to the onset and breaking of sunflower embryo dormancy. In: Lang GA (ed) Plant dormancy: physiology, biochemistry and molecular biology. CAB International, Wallingford, pp 221–231

    Google Scholar 

  • Lee C, Chien C, Lin C, Chiu Y, Yang Y (2006) Protein changes between dormant and dormancy-broken seeds of Prunus campanulata Maxim. Proteomics 6:4147–4154

    Article  CAS  PubMed  Google Scholar 

  • Li XB, Fan XP, Wang XL, Cai L, Yang WC (2005) The cotton ACTIN1 gene is functionally expressed in fibers and participates in fiber elongation. Plant Cell 17(3):859–875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindholm P, Kuittinen T, Sorri O, Guo DY, Merits A, Tormakangas K, Runeberg-Roos P (2000) Glycosylation of phytepsin and expression of dad1, dad2 and ost1 during onset of cell death in germinating barley scutella. Mech Dev 93:169–173

    Article  CAS  PubMed  Google Scholar 

  • Lindquist S, Craig EA (1988) The heat-shock proteins. Ann Rev Genet 22:631–677

    Article  CAS  PubMed  Google Scholar 

  • Liu CJ (2000) Cotinus coggygria Scop. var. cinerea Engl. In: The National Service Center for State-Owned Forest Farms and Forest Seed and Seedling Affairs of the Forestry Ministry (ed) Seeds of woody plants in China. China Forestry Publishing House, Beijing, p 870

  • McDowell JM, Huang S, McKinney EC, An Y-Q, Meagher RB (1996) Structure and evolution of the actin gene family in Arabidopsis thaliana. Genetics 142:587–602

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mizrahi T, Heller J, Goldenberg S, Arad Z (2010) Heat shock proteins and resistance to desiccation in congeneric land snails. Cell Stress Chaperon 15:351–363

    Article  CAS  Google Scholar 

  • Pappin DJ, Hojrup P, Bleasby AJ (1993) Rapid identification of proteins by peptide-mass fingerprinting. Curr Biol 3:327–332

    Article  CAS  PubMed  Google Scholar 

  • Pawłowski TA (2007) Proteomics of European beech (Fagus sylvatica L.) seed dormancy breaking: influence of abscisic and gibberellic acids. Proteomics 7:2246–2257

    Article  PubMed  Google Scholar 

  • Pawłowski TA (2009) Proteome analysis of Norway maple (Acer platanoides L.) seeds dormancy breaking and germination: influence of abscisic and gibberellic acids. BMC Plant Biol 9:48–58

    Article  PubMed  PubMed Central  Google Scholar 

  • Pawłowski TA (2010) Proteomic approach to analyze dormancy breaking of tree seeds. Plant Mol Biol 73:15–25

  • Shevchenko A, Wilm M, Vorm O, Mann M (1996) Mass spectrometric sequencing of proteins from silver stained polyacrylamide gels. Anal Chem 68:850–858

    Article  CAS  PubMed  Google Scholar 

  • Sorensen JG, Kristensen TN, Loeschcke V (2003) The evolutionary and ecological role of heat shock proteins. Ecol Lett 6:1025–1037

    Article  Google Scholar 

  • SPSS (2003) SPSS 12.0. SPSS Inc., Chicago

  • Staiger CJ, Schliwa M (1987) Actin localization and function in higher plants. Protoplasma 141:1–12

    Article  CAS  Google Scholar 

  • Steinbach HS, Benech-Arnold R, Sanchez RA (1997) Hormonal regulation of dormancy in developing sorghum seeds. Plant Physiol 113:149–154

    CAS  PubMed  PubMed Central  Google Scholar 

  • Terauchi K, Asakura T, Nishizawa NK, Matsumoto I, Abe K (2004) Characterization of the genes for two soybean aspartic proteinases and analysis of their different tissue-dependent expression. Planta 218(6):947–957

    Article  CAS  PubMed  Google Scholar 

  • Vieira M, Pissarra J, Verissimo P, Castanheira P, Costa Y, Pires E, Faro C (2001) Molecular cloning and characterization of cDNA encoding cardosin B, an aspartic proteinase accumulating extracellularly in the transmitting tissue of Cynara cardunculus L. Plant Mol Biol 45:529–539

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Li X, Deng X, Han H, Shi W, Li Y (2007) A protein extraction method compatible with proteomic analysis for the euhalophyte Salicornia europaea. Electrophoresis 28:3976–3987

    Article  CAS  PubMed  Google Scholar 

  • White CN, Rivin CJ (2000) Gibberellins and seed development in maize. II. Gibberellin synthesis inhibition enhances abscisic acid signaling in cultured embryos. Plant Physiol 122:1089–1097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White CN, Proebsting WM, Hedden P, Rivin CJ (2000) Gibberellins and seed development in maize. I. Evidence that gibberellin/abscisic acid balance governs germination versus maturation pathways. Plant Physiol 122:1081–1088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilkens S, Zheng Y, Zhang Z (2005) A structural model of the vacuolar ATPase from transmission electron microscopy. Micron 36:109–126

    Article  CAS  PubMed  Google Scholar 

  • Wu ZY, Raven PH, Hong DY (2008) Flora of China, vol 11. Science Press, Beijing, pp 343–345 (in Chinese)

    Google Scholar 

  • Xia Y, Suzuki H, Borevitz J, Blount J, Guo Z, Patel K, Dixon RA, Lamb C (2004) An extracellular aspartic protease functions in Arabidopsis disease resistance signaling. EMBO J 23:980–988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamauchi Y, Ogawa M, Kuwahara A, Hanada A, Kamiya Y, Yamaguchi S (2004) Activation of gibberellin biosynthesis and response pathways by low temperature during imbibition of Arabidopsis thaliana seeds. Plant Cell 16:367–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yasunari O, Kazuhiro I, Toshio K, Akira E, Mitsumasa H, Takashi S, Toru T, Shigeko U, Minoru M, Naoki M, Shigeo T, Kazuho I, Takashi G, Rika M, Koji T, Koichiro T (2000) Chinese spring wheat (Triticum aestivum L.) chloroplast genome: complete sequence and contig clones. Plant Mol Biol Rep 18:243–253

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Drs. Shihua Shen, Xue Zhao and Kuixian Ji from the Institute of Botany, Chinese Academy of Sciences, Beijing, China and Dr. Langtao Xiao, Ms. Jianhua Tong and Qiong Peng from the Hunan Provincial Key Laboratory of Phytohormone and Growth Development, Hunan Agricultural University, Changsha, Hunan, China for providing assistances; and the National Natural Science Foundation of China (81303169), the Doctoral Scientific Research Foundation of Hubei University for Nationalities (MY2013B014), Guangxi Natural Science Foundation (2013jjBA40121) and the Open Fund of Key Laboratory of Biologic Resources Protection and Utilization of Hubei Province (PKLHB1304) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi Jun Deng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, Z.J., Hu, X.F., Ai, X.R. et al. Dormancy release of Cotinus coggygria seeds under a pre-cold moist stratification: an endogenous abscisic acid/gibberellic acid and comparative proteomic analysis. New Forests 47, 105–118 (2016). https://doi.org/10.1007/s11056-015-9496-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11056-015-9496-2

Keywords

Navigation