Skip to main content
Log in

Maturation and related aspects in clonal forestry—Part I: concepts, regulation and consequences of phase change

  • Published:
New Forests Aims and scope Submit manuscript

Abstract

Progression from the juvenile to mature phase in woody plants is accompanied by changes in characteristics as diverse as adventitious rooting capacity, leaf morphology, canopy architecture, wood anatomy and reproductive development. Many concepts of phase change, the intensity and duration of changes that occur during the phase transition, and the practical consequences of plant maturation for growth and development, are poorly understood. Little is known about the physiological and environmental control of maturation in woody plants compared with herbaceous plants, and reliable markers of phase state have only been developed for a few species, mainly conifers. Understanding the mechanisms and forms of phase change is a prerequisite for achieving maturation or rejuvenation for applications such as seed production or clonal propagation. This review describes concepts, terminology and consequences of phase change, combining theoretical and practical aspects of tree maturation that relate to clonal forestry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abu-Abied M, Szwerdszarf D, Mordehaev I, Levy A, Rogovoy O, Belausov E, Yaniv Y, Uliel S, Katzenellenbogen M, Riov J, Ophir R, Sadot E (2012) Microarray analysis revealed upregulation of nitrate reductase in juvenile cuttings of Eucalyptus grandis, which correlated with increased nitric oxide production and adventitious root formation. Plant J 71:787–799

    CAS  PubMed  Google Scholar 

  • Aderkas P, Bonga JM (2000) Influencing micropropagation and somatic embryogenesis in mature trees by manipulation of phase change, stress and culture environment. Tree Physiol 20:921–928

    Google Scholar 

  • Ades PK, Simpson JA (1990) Clonal selection for resistance to Dothistroma needle blight in Pinus radiata. New For 4:27–35

    Google Scholar 

  • Aimers-Halliday J, Menzies MI, Faulds T, Holden DG, Low CB, Dibley MJ (2003) Nursery systems to control maturation in Pinus radiata cuttings, comparing hedging and serial propagation. N Z J For Sci 33:135–155

    Google Scholar 

  • Amasino RM, Michaels SD (2010) The timing of flowering. Plant Physiol 154:516–520

    CAS  PubMed Central  PubMed  Google Scholar 

  • Andrés H, Fernández B, Rodríguez R, Rodríguez A (2002) Phytohormone contents in Corylus avellana and their relationship to age and other developmental processes. Plant Cell, Tissue Organ Cult 70:173–180

    Google Scholar 

  • Arnaud Y, Franclet A, Tranvan H, Jacques M (1993) Micropropagation and rejuvenation of Sequoia sempervirens (Lamb) Endl: a review. Ann Sci For 50:273–295

    Google Scholar 

  • Atkinson CJ, Brennan RM, Jones HG (2013) Declining chilling and its impact on temperate perennial crops. Environ Exp Bot 91:48–62

    Google Scholar 

  • Balusabramanian S, Sureshkumar S, Lempe J, Weigel D (2006) Potent induction of Arabidopsis thaliana flowering by elevated growth temperature. PLoS Genet 2:e106

    Google Scholar 

  • Bandurski RS, Cohen JD, Slovin JP, Reinecke DM (1995) Auxin biosynthesis and metabolism. In: Davies PJ (ed.) Plant hormones. Physiology, biochemistry and molecular biology. Kluwer, pp 39–65

  • Bauer H, Bauer U (1980) Photosynthesis in leaves of the juvenile and adult phase of ivy (Hedera helix). Physiol Plant 49:366–372

    CAS  Google Scholar 

  • Baurens FC, Nicolleau J, Legavre T, Verdeil L, Monteuuis O (2004) Genomic DNA methylation of juvenile and mature Acacia mangium micropropagated in vitro with reference to leaf morphology as a phase change marker. Tree Physiol 24:401–407

    CAS  PubMed  Google Scholar 

  • Betsuyaku S, Takahashi F, Kinoshita A, Miwa H, Shinozaki K, Fukuda H, Sawa S (2011) Mitogen-activated protein kinase regulated by the CLAVATA receptors contributes to shoot apical meristem homeostasis. Plant Cell Physiol 52:14–29

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bitencourt J, Ribas KCZ, Wendling I, Koeler H (2009) Enraizamento de estacas de erva-mate (Ilex paraguariensis A. St.-Hill.) provenientes de brotações rejuvenescidas. Rev Bras Plant Med 11:277–281

    Google Scholar 

  • Bolstad PV, Libby WJ (1982) Comparisons of Radiata pine cuttings of hedge and tree form origin after seven growing seasons. Silvae Genet 31:9–13

    Google Scholar 

  • Bon MC, Riccardi F, Monteuuis O (1994) Influence of phase change within a 90-year-old Sequoia sempervirens on its in vitro organogenic capacity and protein patterns. Trees 8:283–287

    Google Scholar 

  • Bond BJ (2000) Age-related changes in photosynthesis of woody plants. Trends Plant Sci 5:349–353

    CAS  PubMed  Google Scholar 

  • Bond BJ, Czarnomski NM, Cooper C, Day ME, Greenwood MS (2007) Developmental decline in height growth in Douglas-fir. Tree Physiol 27:441–453

    PubMed  Google Scholar 

  • Brand MH, Lineberger RD (1992) In vitro rejuvenation of Betulaceae: biochemical evaluation. Am J Bot 79:626–635

    CAS  Google Scholar 

  • Burrows GE (1990) Anatomical aspects of root bud development in Hoop pine. Aust J Bot 38:73–78

    Google Scholar 

  • Carlsbecker A, Tandre K, Johanson U, Englund M, Engström P (2004) The MADS-box gene DAL1 is a potential mediator of the juvenile-to-adult transition in Picea abies. Plant J 40:546–557

    CAS  PubMed  Google Scholar 

  • Castillo M-C, Forment J, Gadea J, Carrasco JL, Juarez J, Navarro L, Ancillo G (2013) Identification of transcription factors potentially involved in the juvenile to adult transition in Citrus. Ann Bot 112:1371–1381

    CAS  PubMed  Google Scholar 

  • Centeno ML, Rodríguez R, Berros B, Rodríguez A (1997) Endogenous hormonal content and somatic embryogenic capacity of Corylus avellana L. cotyledons. Plant Cell Rep 17:139–144

    CAS  Google Scholar 

  • Chauvin JE, Salesses G (1988) Advances in chestnut micropropagation (Castanea sp.). Acta Hortic 227:1340–1345

    Google Scholar 

  • Clark SE (2001) Cell signalling at the shoot meristem. Nat Rev Mol Cell Biol 2:276–284

    CAS  PubMed  Google Scholar 

  • Climent J, Chambel MR, López R, Mutke S, Alía R, Gil L (2006) Population divergence for heteroblasty in the Canary Island pine (Pinus canariensis, Pinaceae). Am J Bot 93:840–848

    PubMed  Google Scholar 

  • Crisosto CH, Grantz DA, Meinzer FC (1992) Effects of water deficit on flower opening in coffee (Coffea arabica L.). Tree Physiol 10:127–139

    PubMed  Google Scholar 

  • Day ME, Greenwood (2011) Regulation of ontogeny in temperate conifers. In: Meinzer FC, Lachenbruch B, Dawson TE (eds) Size- and age-related changes in tree structure and function. Springer, Netherlands, pp 91–119

    Google Scholar 

  • Day JS, Jameson PS, Gould KS (1995) Cytokinin changes during vegetative metamorphosis in Elaeocarpus hookerianus. Aust J Plant Physiol 22:67–73

    CAS  Google Scholar 

  • Day JS, Gould K, Jameson PE (1997) Vegetative architecture of Elaeocarpus hookerianus. Transition from juvenile to adult. Ann Bot 2:617–624

    Google Scholar 

  • Day JS, Gould K, Jameson PE (1998) Adventitious root initiation, plasticity, and response to plant growth regulator treatments of seedling, juvenile, and adult Elaeocarpus hookerianus plants. N Z J Bot 36:477–484

    Google Scholar 

  • Day ME, Greenwood MS, White AS (2001) Age related changes in foliar morphology and physiology in red spruce and their influence on declining photosynthetic rates and productivity with tree age. Tree Physiol 21:1195–1204

    CAS  PubMed  Google Scholar 

  • Day ME, Greenwood MS, Diaz-Sala C (2002) Age-and size-related trends in woody plant shoot development: regulatory pathways and evidence for genetic control. Tree Physiol 22:507–513

    CAS  PubMed  Google Scholar 

  • Dodsworth S (2009) A diverse and intricate signaling network regulates stem cell fate in the shoot apical meristem. Dev Biol 336:1–9

    CAS  PubMed  Google Scholar 

  • Dutkowski GW, Potts BM, Williams DR, Kube PD, McArthur C (2001) Geographic genetic variation in central Victorian Eucalyptus nitens. In: IUFRO Symposium on Developing the Eucalypt for the Future, CD-ROM communication. INFOR, Valdivia

  • Fernández-Lorenzo JL, Rigueiro A, Ballester A (1999) Polyphenols as potential markers to differentiate juvenile and mature chestnut shoot cultures. Tree Physiol 19:461–466

    PubMed  Google Scholar 

  • Fernández-Ocaña A, García-López MC, Jiménez-Ruiz J, Saniger L, Macías D, Navarro F, Oya R, Belaj A, de la Rosa R, Corpas FJ, Barroso JB, Luque F (2010) Identification of a gene involved in the juvenile-to-adult transition (JAT) in cultivated olive trees. Tree Genet Genomes 6:891–903

    Google Scholar 

  • Fico GR, Bilia A, Morelli I, Tomè F (2000) Flavonoid distribution in Pyracantha coccinea plants at different growth phases. Biochem Syst Ecol 28:673–678

    CAS  PubMed  Google Scholar 

  • Fortanier EJ, Jonkers H (1976) Juvenility and maturity of plants as influenced by their ontogenetical and physiological ageing. Acta Hortic 56:37–44

    Google Scholar 

  • Foster GS, Bentzer BG, Hellberg AR, Podzorski AC (1989) Height and growth habit of Norway spruce rooted cuttings compared between two serial propagation cycles. Can J For Res 19:806–811

    Google Scholar 

  • Fouda RA (1996) Anatomical characteristics of juvenile and adult shoots associated with rooting ability of Cupressocyparis leylandii cuttings. Kert Tud 28:107–111

    Google Scholar 

  • Fraga MF, Cañal MJ, Rodríguez R (2002a) Phase-change related epigenetic and physiological changes in Pinus radiata D. Don Planta 215:672–678

    CAS  Google Scholar 

  • Fraga MF, Rodríguez R, Cañal MJ (2002b) Genomic DNA methylation-demethylation during ageing reinvigoration of Pinus radiata. Tree Physiol 22:813–816

    CAS  PubMed  Google Scholar 

  • Fraga MF, Canal MJ, Rodriguez R (2002c) In vitro morphogenic potential of differently aged Pinus radiata trees correlates with polyamines and DNA methylation levels. Plant Cell, Tissue Organ Cult 70:139–145

    CAS  Google Scholar 

  • Fraga MF, Rodríguez R, Cañal MJ (2003) Reinvigoration of Pinus radiata is associated with partial recovery of juvenile-like polyamine concentrations. Tree Physiol 23:205–209

    CAS  PubMed  Google Scholar 

  • Fraga MF, Berdasco M, Diego LB, Rodríguez R, Cañal MJ (2004) Changes in polyamine concentration associated with aging in Pinus radiata and Prunus persica. Tree Physiol 24:1221–1226

    CAS  PubMed  Google Scholar 

  • Frampton J, Li B, Goldfarb B (2000) Early field growth of loblolly pine rooted cuttings and seedlings. South J Appl For 24:98–105

    Google Scholar 

  • Franclet A, Boulay M, Bekkaoui F, Fouret Y, Verschoore-Martouzet B, Walker N (1987) Rejuvenation. In: Bonga JM, Durzan DJ (eds) Cell and tissue culture in forestry, v1. Martinus Nijhoff, Amsterdam, pp 232–248

    Google Scholar 

  • Garcia JL, Avidan N, Troncoso A, Sarmiento R, Lavee S (2000) Possible juvenile-related proteins in olive tree tissues. Sci Hortic 85:271–284

    CAS  Google Scholar 

  • George EF (1993) Plant propagation by tissue culture. Part 1. the technology. Exegetics, Edington

    Google Scholar 

  • Gordon SP, Chickarmane VS, Ohno C, Meyerowitz EM (2009) Multiple feedback loops through cytokinin signaling control stem number within the Arabidopsis shoot meristem. Proc Nat Acad Sci USA 106:16529–16534

    CAS  PubMed Central  PubMed  Google Scholar 

  • Greenwood MS (1984) Phase change in loblolly pine: shoot development as a function of age. Physiol Plant 61:518–522

    Google Scholar 

  • Greenwood MS (1995) Juvenility and maturation in conifers: current concepts. Tree Physiol 15:433–438

    PubMed  Google Scholar 

  • Greenwood MS, Hutchinson KW (1993) Maturation as a developmental process. In: Ahuja MR, Libby WJ (eds) Clonal forestry I: genetics and biotechnology, 1st edn. Springer, Heidelberg, pp 14–33

    Google Scholar 

  • Greenwood MS, Hopper CA, Hutchison KW (1989) Maturation in larch. I Effect of age on shoot growth, foliar characteristics and DNA methylation. Plant Physiol 90:406–412

    CAS  PubMed Central  PubMed  Google Scholar 

  • Greenwood MS, Day ME, Schatz J (2010) Separating the effects of tree size and meristem maturation on shoot development of grafted scions of red spruce (Picea rubens). Tree Physiol 30:459–468

    PubMed  Google Scholar 

  • Guo Y, Han L, Hymes M, Denver R, Clark C (2010) CLAVATA2 forms a distinct CLE-binding receptor complex regulating Arabidopsis stem cell specification. Plant J 63:889–900

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hackett WP (1987a) Donor plant maturation and adventitious root formation. In: Davies T, Haissig B, Sankhla N (eds) Adventitious root formation in cuttings, 1st edn. Dioscorides Press, Portland, pp 11–28

    Google Scholar 

  • Hackett WP (1987b) Juvenility and maturity. In: Bonga JM, Durzan DJ (eds) Cell and tissue culture in forestry, v1. Martinus Nijhoff, Dordrecht, pp 216–231

    Google Scholar 

  • Hackett WP, Murray JR (1993) Maturation and rejuvenation in woody species. In: Ahuja MR (ed) Micropropagation of woody plants. Kluwer Academic, Dordrecht, pp 93–105

    Google Scholar 

  • Haffner V, Enjalric F, Lardet L, Carron MP (1991) Maturation of woody plants: a review of metabolic and genomic aspects. Ann Sci For 48:615–630

    Google Scholar 

  • Hafiz IA, Abbasi NA, Ahmad T, Hussain A (2008) DNA methylation profiles differ between juvenile and adult phase leaves of crab apple (Malus micromalus) seedling tree. Pak J Bot 40:1025–1032

    CAS  Google Scholar 

  • Haines R, Walker S (1993) Maturation questions relating to clonal forestry. Clonal forestry workshop. Queensland Forest Research Institute, Gympie, pp 1–14

    Google Scholar 

  • Hand P, Besford RT, Richardson CM, Peppit SD (1996) Antibodies to phase related proteins in juvenile and mature Prunus avium. Plant Growth Regul 20:25–29

    CAS  Google Scholar 

  • Hartmann HT, Kester DE, Davies Junior FT, Geneve RL (2011) Plant propagation: principles and practices. Prentice-Hall, New Jersey

    Google Scholar 

  • Hasbún R, Valledor L, Berdasco M, Santamaría E, Cañal MJ, Rodríguez R, Ríos D, Sánchez M (2005) In vitro proliferation and genome DNA methylation in adult chestnuts. Acta Hortic 693:333–340

    Google Scholar 

  • Hatsuda Y, Nishio S, Komori S, Nishiyama M, Kanahama K, Kanayama Y (2011) Relationship between MdMADS11 gene expression and juvenility in apple. J Jpn Soc Hortic Sci 80:396–403

    CAS  Google Scholar 

  • Huang HJ, Chen Y, Kuo JL, Kuo TT, Tzeng CC, Huang BL, Chen CM, Huang LC (1996) Rejuvenation of Sequoia sempervirens in vitro: changes in isoesterases and isoperoxidases. Plant Cell Physiol 37:77–80

    CAS  Google Scholar 

  • Huang LC, Weng JH, Wang CH, Kuo CI, Shieh YJ (2003a) Photosynthetic potentials of in vitro-grown juvenile, adult, and rejuvenated Sequoia sempervirens shoots. Bot Bull Acad Sin 44:31–35

    Google Scholar 

  • Huang LC, Chow TY, Tseng TC, Kuo CI, Liu SM, Ngoh MG, Murashige T, Huang HJ (2003b) Association of mitochondrial plasmids with rejuvenation of the coastal redwood, Sequoia sempervirens (D. Don) Endl. Bot Bull Acad Sin 44:25–30

    CAS  Google Scholar 

  • Huang LC, Hsiao LJ, Pu SY, Kuo CI, Huang BL, Tseng TC, Huang HJ, Chen YT (2012) DNA methylation and genome rearrangement characteristics of phase change in cultured shoots of Sequoia sempervirens. Physiol Plant 145:360–368

    CAS  PubMed  Google Scholar 

  • Huijser P, Schmid M (2011) The control of developmental phase transitions in plants. Development 138:4117–4129

    CAS  PubMed  Google Scholar 

  • Hung CD, Trueman SJ (2011) Topophysic effects differ between node and organogenic cultures of the eucalypt Corymbia torelliana × C. citriodora. Plant Cell, Tissue Organ Cult 104:69–77

    Google Scholar 

  • Husen A (2008) Clonal propagation of Dalbergia sissoo Roxb. and associated metabolic changes during adventitious root primordium development. New For 36:13–27

    Google Scholar 

  • Husen A (2012) Changes of soluble sugars and enzymatic activities during adventitious rooting in cuttings of Grewia optiva as affected by age of donor plants and auxin treatments. Am J Plant Physiol 7:1–16

    CAS  Google Scholar 

  • Husen A, Khatoon S (2012) Role of anthraquinones as a marker of juvenility and maturity in response to adventitious rooting of Tectona grandis. Am J Plant Physiol 7:220–231

    CAS  Google Scholar 

  • Husen A, Pal M (2006) Variation in shoot anatomy and rooting behaviour of stem cuttings in relation to age of donor plants in teak (Tectona grandis Linn. f.). New For 31:57–73

    Google Scholar 

  • Husen A, Pal M (2007) Metabolic changes during adventitious root primordium development in Tectona grandis (teak) cuttings as affected by age of donor plants and auxin (IBA and NAA) treatment. New For 33:309–323

    Google Scholar 

  • Hutchison KW, Sherman CD, Weber J, Smith SS, Singer PB, Greenwood MS (1990) Maturation in larch. II. Effects of age on photosynthesis and gene expression in developing foliage. Plant Physiol 94:1308–1315

    CAS  PubMed Central  PubMed  Google Scholar 

  • James SA, Bell DT (2001) Leaf morphological and anatomical characteristics of heteroblastic Eucalyptus globulus ssp. globulus (Myrtaceae). Aust J Bot 49:259–269

    Google Scholar 

  • Jaya E, Kubien DS, Jameson PE, Clemens J (2010) Vegetative phase change and photosynthesis in Eucalyptus occidentalis: architectural simplification prolongs juvenile traits. Tree Physiol 30:393–403

    PubMed  Google Scholar 

  • Jordan GJ, Potts BM, Chalmers P, Wiltshire RJE (2000) Quantitative genetic evidence that the timing of vegetative phase change in Eucalyptus globulus is an adaptive trait. Aust J Bot 48:561–567

    Google Scholar 

  • Karenlampi PP, Riekkinen M (2004) Maturity and growth rate effects on scots pine basic density. Wood Sci Technol 38:465–473

    Google Scholar 

  • Kumar SV, Lucyshyn D, Jaeger KE, Alós E, Alvey E, Harberd NP, Wigge PA (2012) Transcription factor PIF4 controls the thermosensory activation of flowering. Nature 484:242–245

    CAS  PubMed  Google Scholar 

  • Kuo JL, Huang HJ, Cheng CM, Chen LJ, Huang BL, Huang LC, Kuo TT (1995) Rejuvenation in vitro: modulation of protein phosphorylation in Sequoia sempervirens. J Plant Physiol 146:333–336

    CAS  Google Scholar 

  • Kurokura T, Mimida N, Battey NH, Hytönen T (2013) The regulation of seasonal flowering in the Rosaceae. J Exp Bot 64:4131–4141

    CAS  PubMed  Google Scholar 

  • Ky-Dembele C, Tigabu M, Bayala J, Savadogo P, Boussim IJ, Odén PC (2011) Clonal propagation of Khaya senegalensis: the effects of stem length, leaf area, auxins, smoke solution, and stockplant age. Int J For Res 10 pp

  • Majada J, Martínez-Alonso C, Feito I, Kidelman A, Aranda I, Alía R (2011) Mini-cuttings: an effective technique for the propagation of Pinus pinaster Ait. New For 41:399–412

    Google Scholar 

  • Mason WL, Gill JGS (1986) Vegetative propagation of conifers as a means of intensifying wood production in Britain. Forestry 59:155–172

    Google Scholar 

  • Mason WL, Menzies MI, Biggin P (2002) A comparison of hedging and repeated cutting cycles for propagating clones of Sitka spruce. Forestry 75:149–162

    Google Scholar 

  • Materán ME, Fernández M, Valenzuela S, Sáez K, Seemann P, Sánchez-Olate M, Ríos D (2009) Abscisic acid and 3-indolacetic acid levels during the reinvigoration process of Pinus radiata D. Don adult material. Plant Growth Regul 59:171–177

    Google Scholar 

  • McGowran E, Douglas GC, Parkinson M (1998) Morphological and physiological markers of juvenility and maturity in shoot cultures of oak (Quercus robur and Q. petraea). Tree Physiol 18:251–257

    PubMed  Google Scholar 

  • McGranahan MF, Borralho NMG, Greaves BL (1999) Genetic control of propagation effects and the importance of stock plant age and source on early growth in cuttings of Pinus radiata. Silvae Genet 48:267–272

    Google Scholar 

  • McMahon TV, Hung CD, Trueman SJ (2013) In vitro storage delays the maturation of African mahogany (Khaya senegalensis) clones. J Plant Sci 8:31–38

    Google Scholar 

  • McMahon TV, Hung CD, Trueman SJ (2014) Clonal maturation of Corymbia torelliana × C. citriodora is delayed by minimal-growth storage. Aust For (in press)

  • Meijón M, Valledor L, Santamaria E, Testillano PS, Risueño MC, Rodríguez R, Feito I, Cañal MJ (2009) Epigenetic characterization of the vegetative and floral stages of azalea buds: dynamics of DNA methylation and histone H4 acetylation. J Plant Physiol 166:1624–1636

    PubMed  Google Scholar 

  • Mencuccini M, Martínez-Vilalta J, Hamid HA, Korakaki E, Vanderklein D (2007) Evidence for age- and size-mediated controls of tree growth from grafting studies. Tree Physiol 27:463–473

    PubMed  Google Scholar 

  • Menzies MI, Dibley MJ, Faulds T, Aimers-Halliday J, Holden DG (2000) Morphological markers of physiological age for Pinus radiata. N Z J For Sci 30:359–364

    Google Scholar 

  • Menzies MI, Faulds T, Holden DG, Kumar S, Klomp BK (2004) Maturation status and genetic improvement effects on growth, form, and wood properties of Pinus radiata cuttings up to age 12 years. N Z J For Sci 34:255–271

    Google Scholar 

  • Mitchell RG, Zwolinski J, Jones NB (2004) A review on the effects of donor maturation on rooting and field performance of conifer cuttings. South Afr For J 201:53–63

    Google Scholar 

  • Moncaleán R, Rodríguez A, Fernández B (2001) Plant growth regulators as putative physiological markers of developmental stage in Prunus persica. Plant Growth Regul 36:27–29

    Google Scholar 

  • Monteuuis O, Vallauri D, Poupard C, Chauvière M (1995) Rooting Acacia mangium cuttings of different physiological age with reference to leaf morphology as a phase change marker. Silvae Genet 44:150–154

    Google Scholar 

  • Monteuuis O, Doulbeau S, Verdeil JL (2008) DNA methylation in different origin clonal offspring from a mature Sequoiadendron giganteum genotype. Trees 22:779–784

    CAS  Google Scholar 

  • Munné-Bosch S (2007) Aging in perennials. Plant Sci 26:123–138

    Google Scholar 

  • Munné-Bosch S, Lalueza P (2007) Age-related changes in oxidative stress markers and abscisic acid levels in a drought-tolerant shrub, Cistus clusii grown under Mediterranean field conditions. Planta 225:1039–1049

    PubMed  Google Scholar 

  • Murray JR, Hackett WP (1991) Dihydroflavonol reductase activity in relation to differential anthocyanin accumulation in juvenile and mature phase Hedera helix L. Plant Physiol 97:343–351

    CAS  PubMed Central  PubMed  Google Scholar 

  • Murray JR, Smith AG, Hackett WP (1994) Differential diiydroflavonol reductase transcription and anthocyanin pigmentation in the juvenile and mature phases of ivy (Hedera helix). Planta 194:102–109

    CAS  Google Scholar 

  • Normanly J (2010) Approaching cellular and molecular resolution of auxin biosynthesis and metabolism. Cold Spring Harb Perspect Biol 2:a001594

    PubMed Central  PubMed  Google Scholar 

  • Olesen PO (1978) On cyclophysis and topophysis. Silvae Genet 27:173–178

    Google Scholar 

  • Oliveira MLD, Xavier A, Santos APD, Andrade HB (2006) Efeito da estaquia, miniestaquia, microestaquia e micropropagação no desempenho silvicultural de clones híbridos de Eucalyptus spp. Rev Árv 30:503–512

    Google Scholar 

  • Onate M, Munné-Bosch S (2008) Meristem aging is not responsible for age-related changes in growth and abscisic acid levels in the Mediterranean shrub, Cistus clusii. Plant Biol 10:148–155

    CAS  PubMed  Google Scholar 

  • Osterc G, Štefančič M, Štampar F (2009) Juvenile stockplant material enhances root development through higher endogenous auxin level. Acta Physiol Plant 31:899–903

    CAS  Google Scholar 

  • Parker SR, White TL, Hodge GR, Powell GL (1998) The effects of scion maturation on growth and reproduction of grafted slash pine. New For 3:243–259

    Google Scholar 

  • Peer KR, Greenwood MS (2001) Maturation, topophysis and other factors in relation to rooting in Larix. Tree Physiol 21:267–272

    CAS  PubMed  Google Scholar 

  • Perrin Y, Doumas P, Lardet L (1997) Endogenous cytokinins as biochemical markers of rubber-tree (Hevea brasiliensis) clone rejuvenation. Plant Cell, Tissue Organ Cult 47:239–245

    Google Scholar 

  • Pijut PM, Wowste KE, Michler CH (2011) Promotion of adventitious root formation of difficult-to-root hardwood tree species. Hortic Rev 38:213–251

    CAS  Google Scholar 

  • Poethig RS (1990) Phase change and the regulation of shoot morphogenesis in plants. Science 250:923–930

    CAS  PubMed  Google Scholar 

  • Poethig RS (2003) Phase change and the regulation of developmental timing in plants. Science 301:334–336

    CAS  PubMed  Google Scholar 

  • Poethig RS (2010) The past, present, and future of vegetative phase change. Plant Physiol 154:541–544

    CAS  PubMed Central  PubMed  Google Scholar 

  • Posé D, Verhage L, Ott F, Yant L, Mathieu J, Angenent GC, Immink RGH, Schmid M (2013) Temperature-dependent regulation of flowering by antagonistic FLM variants. Nature 503:414–417

    PubMed  Google Scholar 

  • Power AB, Dodd RS (1984) Early differential susceptibility of juvenile seedlings and more mature stecklings of Pinus radiata to Dothistroma pini. N Z J For Sci 14:223–228

    Google Scholar 

  • Power AB, Dodd RS, Libby WJ (1988) Cyclophysis and topophysis in coast redwood stecklings. I Rooting and nursery performance. Silvae Genet 71:8–14

    Google Scholar 

  • Power AB, Dodd RS, Libby WJ (1994) Effects of hedging on maturation in Radiata Pine: western gall rust susceptibility. Silvae Genet 43:1–7

    Google Scholar 

  • Rey M, Díaz-Sala C, Rodríguez R (1994a) Effect of repeated severe pruning on endogenous polyamine content in hazelnut trees. Physiol Plant 92:487–492

    CAS  Google Scholar 

  • Rey M, Tiburcio AF, Díaz-Sala C, Rodríguez R (1994b) Endogenous polyamine concentrations in juvenile, adult and in vitro reinvigorated hazel. Tree Physiol 14:191–200

    CAS  PubMed  Google Scholar 

  • Richardson AD, Berlyn GP, Ashton PMS, Thadani R, Cameron IR (2000) Foliar plasticity of hybrid spruce in relation to crown position and stand age. Can J Bot 78:305–317

    Google Scholar 

  • Ritchie GA, Keeley JW (1994) Maturation in Douglas-fir: I. changes in stem, branch and foliage characteristics associated with ontogenetic aging. Tree Physiol 14:1245–1259

    PubMed  Google Scholar 

  • Robinson W, Wareing PF (1969) Experiments on the juvenile-adult phase change in some woody species. New Phytol 68:67–78

    Google Scholar 

  • Sánchez MC, Vieitez AM (1991) In vitro morphogenetic competence of basal sprouts and crown branches of mature chestnut. Tree Physiol 8:59–70

    PubMed  Google Scholar 

  • Sánchez-Romero C, García-Gómez ML, Pliego-Alfaro F, Heredia A (1993) Peroxidase activity and isoenzyme profiles associated with development of avocado (Persea americana) leaves at different ontogenetic stages. J Plant Growth Regul 12:95–100

    Google Scholar 

  • Schmitzer V, Stampar F, Veberic R, Osterc G (2009) Phase change modifies anthocyanin synthesis in Acer palmatum Thunb. (Japanese maple) cultivars. Acta Physiol Plant 31:415–418

    CAS  Google Scholar 

  • Sijacic P, Liu Z (2010) Novel insights from live-imaging in shoot meristem development. J Integr Plant Biol 52:393–399

    CAS  PubMed  Google Scholar 

  • Sismilich M (2001) Quantitative markers of phase change and modeling the size and complexity of trees. Dissertation, Massey University, New Zealand

  • Suárez-López P, Wheatley K, Robson F, Onouchi H, Valverde F, Coupland G (2001) CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature 410:1116–1120

    PubMed  Google Scholar 

  • Sweet GB, Harris JM (1976) Wood properties of Pinus radiata: seed grown trees compared with grafts from different aged ortets. N Z J For Sci 6:114–121

    Google Scholar 

  • Trueman SJ (2006) Clonal propagation and storage of subtropical pines in Queensland, Australia. South Afr For J 208:49–52

    Google Scholar 

  • Trueman SJ, Pegg GS, King J (2007) Domestication for conservation of an endangered species: the case of the Wollemi pine. Tree For Sci Biotechnol 1:1–10

    Google Scholar 

  • Uddenberg D, Reimegård J, Clapham D, Almqvist C, von Arnold S, Emanuelsson O, Sundström JF (2013) Early cone setting in Picea abies acrocona is associated with increased transcriptional activity of a MADS box transcription factor. Plant Physiol 161:813–823

    CAS  PubMed Central  PubMed  Google Scholar 

  • Valdés AE, Centeno ML, Espinel S, Fernández B (2002) Could plant hormones be the basis of maturation indices in Pinus radiata? Plant Physiol Biochem 40:211–216

    Google Scholar 

  • Valdés AE, Centeno ML, Fernández B (2003a) Changes in the branching pattern of Pinus radiata derived from grafting are supported by variations in the hormonal content. Plant Sci 165:1397–1401

    Google Scholar 

  • Valdés AE, Fernández B, Centeno ML (2003b) Alterations in endogenous levels of cytokinins following grafting of Pinus radiata support ratio of cytokinins as an index of ageing and vigour. J Plant Physiol 160:1407–1410

    PubMed  Google Scholar 

  • Valdés AE, Fernández B, Centeno ML (2004a) Hormonal changes throughout maturation and ageing in Pinus pinea. Plant Physiol Biochem 42:335–340

    PubMed  Google Scholar 

  • Valdés AE, Centeno ML, Fernández B (2004b) Age-related changes in the hormonal status of Pinus radiata needle fascicle meristems. Plant Sci 167:373–378

    Google Scholar 

  • Valledor L, Meijón M, Hasbún R, Cañal MJ, Rodríguez R (2010) Variations in DNA methylation, acetylated histone H4, and methylated histone H3 during Pinus radiata needle maturation in relation to the loss of in vitro organogenic capability. J Plant Physiol 167:351–357

    CAS  PubMed  Google Scholar 

  • Valverde F, Mouradov A, Soppe W, Ravenscroft D, Samach A, Coupland G (2004) Photoreceptor regulation of CONSTANS protein in photoperiodic flowering. Science 303:1003–1006

    CAS  PubMed  Google Scholar 

  • Wang J-W, Park MY, Wang L-J, Koo Y, Chen X-Y, Weigel D, Poethig RS (2011) MiRNA control of vegetative phase change in trees. PLoS Genet 7:e1002012

    CAS  PubMed Central  PubMed  Google Scholar 

  • Welander M (1988) Biochemical and anatomical studies of birch (Betula pendula Roth) buds exposed to different climatic conditions in relation to growth in vitro. In: Hanover JW, Keathley DE (eds) Genetic manipulation of woody plants. Plenum Press, New York, pp 79–99

    Google Scholar 

  • Wendling I, Xavier A (2001) Gradiente de maturação e rejuvenescimento aplicado a espécies florestais. Florest Ambient 8:187–194

    Google Scholar 

  • Wendling I, Xavier A (2005) Influência do ácido indolbutírico e da miniestaquia seriada no vigor radicular de clones de Eucalyptus grandis. Rev Árv 29:681–689

    Google Scholar 

  • Wendling I, Xavier A, Paiva HN (2003) Influência da miniestaquia seriada no vigor de minicepas de clones de Eucalyptus grandis. Rev Árv 27:611–618

    Google Scholar 

  • Wendling I, Dutra LF, Grossi F (2007) Produção e sobrevivência de miniestacas e minicepas de erva-mate cultivadas em sistema semi-hidropônico. Pesq Agropec Bras 42:289–292

    Google Scholar 

  • Wendling I, Trueman SJ, Xavier A (2014) Maturation and related aspects in clonal forestry – Part II: reinvigoration, rejuvenation and juvenility maintenance. New For (companion paper, submitted)

  • Zagory D, Libby WJ (1985) Maturation-related resistance of Pinus radiata to western gall rust. Phytopathology 75:1443–1447

    Google Scholar 

Download references

Acknowledgments

We thank Katie Roberts for assistance with Fig. 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivar Wendling.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wendling, I., Trueman, S.J. & Xavier, A. Maturation and related aspects in clonal forestry—Part I: concepts, regulation and consequences of phase change. New Forests 45, 449–471 (2014). https://doi.org/10.1007/s11056-014-9421-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11056-014-9421-0

Keywords

Navigation