Skip to main content
Log in

Metallization of DNA hydrogel: application of soft matter host for preparation and nesting of catalytic nanoparticles

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Nanoparticles (NPs) of Au, Ag, Pt, Pd, Cu and Ni of 2–3 nm average-size and narrow-size distributions were synthesized in DNA cross-linked hydrogels by reducing corresponding metal precursors by sodium borohydride. DNA hydrogel plays a role of a universal reactor in which the reduction of metal precursor results in the formation of 2–3 nm ultrafine metal NPs regardless of metal used. Hydrogels metallized with various metals showed catalytic activity in the reduction of nitroaromatic compounds, and the catalytic activity of metallized hydrogels changed as follows: Pd > Ag ≈ Au ≈ Cu > Ni > Pt. DNA hydrogel-based “soft catalysts” elaborated in this study are promising for green organic synthesis in aqueous media as well as for biomedical in vivo applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amiya T, Tanaka T (1987) Phase-transitions in cross-linked gels of natural polymers. Macromolecules 20:1162–1164. doi:10.1021/Ma00171a050

    Article  Google Scholar 

  • Anastassopoulou J (2003) Metal-DNA interactions. J Mol Struct 651:19–26. doi:10.1016/S0022-2860(02)00625-7

    Article  Google Scholar 

  • Bahram M, Hoseinzadeh F, Farhadi K, Saadat M, Najafi-Moghaddam P, Afkhami A (2014) Synthesis of gold nanoparticles using pH-sensitive hydrogel and its application for colorimetric determination of acetaminophen, ascorbic acid and folic acid. Colloid Surf A 441:517–524. doi:10.1016/j.colsurfa.2013.09.024

    Article  Google Scholar 

  • Che YX, Zinchenko A, Murata S (2015) Control of a catalytic activity of gold nanoparticles embedded in DNA hydrogel by swelling/shrinking the hydrogel’s matrix. J Colloid Interface Sci 445:364–370. doi:10.1016/j.jcis.2015.01.010

    Article  Google Scholar 

  • Cuenya BR (2010) Synthesis and catalytic properties of metal nanoparticles: size, shape, support, composition, and oxidation state effects. Thin Solid Films 518:3127–3150. doi:10.1016/j.tsf.2010.01.018

    Article  Google Scholar 

  • Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346. doi:10.1021/Cr030698+

    Article  Google Scholar 

  • El-Sheikh SM, Ismail AA, Al-Sharab JF (2013) Catalytic reduction of p-nitrophenol over precious metals/highly ordered mesoporous silica. New J Chem 37:2399–2407. doi:10.1039/c3nj00138e

    Article  Google Scholar 

  • Fernandez-Solis C, Kuroda Y, Zinchenko A, Murata S (2015) Uptake of aromatic compounds by DNA: toward the environmental application of DNA for cleaning water. Colloid Surf B 129:146–153. doi:10.1016/j.colsurfb.2015.03.041

    Article  Google Scholar 

  • Garron A, Bennici S, Auroux A (2010) In situ generated catalysts for NaBH4 hydrolysis studied by liquid-phase calorimetry: influence of the nature of the metal. Appl Catal A 378:90–95. doi:10.1016/j.apcata.2010.02.003

    Article  Google Scholar 

  • Gu S et al (2014) Kinetic analysis of the catalytic reduction of 4-nitrophenol by metallic nanoparticles. J Phys Chem C 118:18618–18625. doi:10.1021/Jp5060606

    Article  Google Scholar 

  • Haruta M (2005) Catalysis–gold rush. Nature 437:1098–1099. doi:10.1038/4371098a

    Article  Google Scholar 

  • Hortiguela MJ, Aranaz I, Gutierrez MC, Ferrer ML, del Monte F (2011) Chitosan gelation induced by the in situ formation of gold nanoparticles and its processing into macroporous scaffolds. Biomacromolecules 12:179–186. doi:10.1021/Bm1010883

    Article  Google Scholar 

  • Jensen RH, Davidson N (1966) Spectrophotometric potentiometric and density gradient ultracentrifugation studies of binding of silver ion by DNA. Biopolymers 4:17. doi:10.1002/bip.1966.360040104

    Article  Google Scholar 

  • Kim JH, Lee TR (2007) Hydrogel-templated growth of large gold nanoparticles: synthesis of thermally responsive hydrogel-nanoparticle composites. Langmuir 23:6504–6509. doi:10.1021/la0629173

    Article  Google Scholar 

  • Lu Y, Mei Y, Drechsler M, Ballauff M (2006) Thermosensitive core-shell particles as carriers for Ag nanoparticles: modulating the catalytic activity by a phase transition in networks. Angew Chem Int Ed 45:813–816. doi:10.1002/anie.200502731

    Article  Google Scholar 

  • Lu Y, Spyra P, Mei Y, Ballauff M, Pich A (2007) Composite hydrogels: robust carriers for catalytic nanoparticles. Macromol Chem Phys 208:254–261. doi:10.1002/macp.200600534

    Article  Google Scholar 

  • Lu Y, Proch S, Schrinner M, Drechsler M, Kempe R, Ballauff M (2009) Thermosensitive core-shell microgel as a “nanoreactor” for catalytic active metal nanoparticles. J Mater Chem 19:3955–3961. doi:10.1039/B822673n

    Article  Google Scholar 

  • Mandal C, Nandi US (1979) Kinetic studies on the interaction of gold(III) with nucleic-acids.1. native DNA-Au(III) system–spectrophotometric studies. Proc Indian Chem Sci 88:263–278

    Google Scholar 

  • Mitra RN, Das PK (2008) In situ preparation of gold nanoparticles of varying shape in molecular hydrogel of peptide amphiphiles. J Phys Chem C 112:8159–8166. doi:10.1021/jp712106d

    Article  Google Scholar 

  • Miwa Y, Zinchenko A, Lopatina LI, Sergeyev VG, Murata S (2014) Size control of gold nanoparticles synthesized in a DNA hydrogel. Polym Int 63:1566–1571

    Article  Google Scholar 

  • Ozay H, Kubilay S, Aktas N, Sahiner N (2011) Utilization of environmentally benign hydrogels and their networks as reactor media in the catalytic reduction of nitrophenols. Int J Polym Mater 60:163–173

    Article  Google Scholar 

  • Pozun ZD, Rodenbusch SE, Keller E, Tran K, Tang WJ, Stevenson KJ, Henkelman G (2013) A systematic investigation of p-nitrophenol reduction by bimetallic dendrimer encapsulated nanoparticles. J Phys Chem C 117:7598–7604. doi:10.1021/jp312588u

    Article  Google Scholar 

  • Ramtenki V, Anumon VD, Badiger MV, Prasad BLV (2012) Gold nanoparticle embedded hydrogel matrices as catalysts: better dispersibility of nanoparticles in the gel matrix upon addition of N-bromosuccinimide leading to increased catalytic efficiency. Colloid Surf A 414:296–301. doi:10.1016/j.colsurfa.2012.08.026

    Article  Google Scholar 

  • Rose S, Prevoteau A, Elziere P, Hourdet D, Marcellan A, Leibler L (2014) Nanoparticle solutions as adhesives for gels and biological tissues. Nature 505:382. doi:10.1038/nature12806

    Article  Google Scholar 

  • Sahiner N, Ozay H, Ozay O, Aktas N (2010) New catalytic route: hydrogels as templates and reactors for in situ Ni nanoparticle synthesis and usage in the reduction of 2-and 4-nitrophenols. Appl Catal A 385:201–207. doi:10.1016/j.apcata.2010.07.004

    Article  Google Scholar 

  • Sahiner N, Ozay O, Inger E, Aktas N (2011) Controllable hydrogen generation by use smart hydrogel reactor containing Ru nano catalyst and magnetic iron nanoparticles. J Power Sources 196:10105–10111. doi:10.1016/j.jpowsour.2011.08.068

    Article  Google Scholar 

  • Sissoeff I, Grisvard J, Guille E (1976) Studies on metal ions-DNA interactions: specific behaviour of reiterative DNA sequences. Prog Biophys Mol biol 31:165–199

    Article  Google Scholar 

  • Stratakis M, Garcia H (2012) Catalysis by supported gold nanoparticles: beyond aerobic oxidative processes. Chem Rev 112:4469–4506. doi:10.1021/Cr3000785

    Article  Google Scholar 

  • Takahara PM, Rosenzweig AC, Frederick CA, Lippard SJ (1995) Crystal-structure of double-stranded DNA containing the major adduct of the anticancer drug cisplatin. Nature 377:649–652. doi:10.1038/377649a0

    Article  Google Scholar 

  • Tan RL et al (2016) Levelling the playing field: screening for synergistic effects in coalesced bimetallic nanoparticles. Nanoscale 8:3447–3453. doi:10.1039/c5nr07763j

    Article  Google Scholar 

  • Wang C, Flynn NT, Langer R (2004) Morphologically well-defined gold nanoparticles embedded in thermo-responsive hydrogel matrices. Nanoeng Assem Adv Micro/Nanosyst 820:333–338

    Google Scholar 

  • Welsch N, Ballauff M, Lu Y (2010) Microgels as nanoreactors: applications in catalysis. Chem Des Responsive Microgels 234:129–163. doi:10.1007/12_2010_71

    Article  Google Scholar 

  • Wunder S, Polzer F, Lu Y, Mei Y, Ballauff M (2010) Kinetic analysis of catalytic reduction of 4-nitrophenol by metallic nanoparticles immobilized in spherical polyelectrolyte brushes. J Phys Chem C 114:8814–8820. doi:10.1021/Jp101125j

    Article  Google Scholar 

  • Yang J, Lee JY, Too HP, Chow GM, Gan LM (2006) Stabilization of Pt nanoparticles by single stranded DNA and the binary assembly of Au and Pt nanoparticles without hybridization. J Nanopart Res 8:1017–1026. doi:10.1007/s11051-005-9000-6

    Article  Google Scholar 

  • Yang MQ, Pan XY, Zhang N, Xu YJ (2013) A facile one-step way to anchor noble metal (Au, Ag, Pd) nanoparticles on a reduced graphene oxide mat with catalytic activity for selective reduction of nitroaromatic compounds. CrystEngComm 15:6819–6828. doi:10.1039/c3ce40694f

    Article  Google Scholar 

  • Yoon I, Zimmerman AM, Tester CC, DiCiccio AM, Jiang YN, Chen W (2009) Hierarchical pattern formation in the diffusion-controlled reduction of HAuCl4 in poly(vinyl alcohol) hydrogels. Chem Mater 21:3924–3932. doi:10.1021/Cm900047p

    Article  Google Scholar 

  • Zhu CH, Hai ZB, Cui CH, Li HH, Chen JF, Yu SH (2012) In situ controlled synthesis of thermosensitive poly(N-isopropylacrylamide)/Au nanocomposite hydrogels by gamma radiation for catalytic application. Small 8:930–936. doi:10.1002/smll.201102060

    Article  Google Scholar 

  • Zinchenko A, Miwa Y, Lopatina LI, Sergeyev VG, Murata S (2014) DNA hydrogel as a template for synthesis of ultrasmall gold nanoparticles for catalytic applications. Acs Appl Mater Inter 6:3226–3232. doi:10.1021/am5008886

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by Grant-in-Aid for Exploratory Research (KAKENHI No. 25620183) and Russian Foundation for Basic Research (RFBR No. 14-03-00696). Maruha Nichiro Holdings, Inc. (Japan) is gratefully acknowledged for free DNA samples extracted from salmon milt. We also thank the High Voltage Electron Microscope Laboratory (Institute of Materials and Systems for Sustainability, Nagoya University) for assistance with the TEM observations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anatoly Zinchenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zinchenko, A., Che, Y., Taniguchi, S. et al. Metallization of DNA hydrogel: application of soft matter host for preparation and nesting of catalytic nanoparticles. J Nanopart Res 18, 179 (2016). https://doi.org/10.1007/s11051-016-3480-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-016-3480-4

Keywords

Navigation