Skip to main content

Advertisement

Log in

Strategies for radiolabeling of commercial TiO2 nanopowder as a tool for sensitive nanoparticle detection in complex matrices

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Detection and quantification of engineered nanoparticles (NPs) in complex environmental or biological media is a major challenge since NP concentrations are generally expected to be low compared to elemental background levels. This study presents three different options for radiolabeling of commercial titania NP (TiO2-NP, AEROXIDE® P25, Evonik Industries, mean diameter 21 nm) for particle detection, localization, and tracing under various experimental conditions. The radiolabeling procedures ensure stability and consistency of important particle properties such as size and morphology. With the presented radiolabeling methods, detection (and quantification) limits for TiO2-NPs in concentrations as low as 0.5 ng/L can be realized in complex systems without the necessity of intense sample purification or pretreatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. In many cell uptake studies exposure times range from several hours to many days or even weeks (Gibson et al. 2011; Marmorato et al. 2011; Simonelli et al. 2011). In such cases the use of short-lived radionuclides that are frequently applied also in medical imaging are of limited use. They can fruitfully only be applied to very fast transport or metabolic mechanisms.

References

  • Abbas K et al (2010) Radiolabelling of TiO2 nanoparticles for radiotracer studies. J Nanopart Res 12:2435–2443. doi:10.1007/s11051-009-9806-8

    Article  Google Scholar 

  • Abbas K, Simonelli F, Holzwarth U, Cydzik I, Bulgheroni A, Gibson N, Kozempel J (2013) Feasibility study of production of radioactive carbon black or carbon nanotubes in cyclotron facilities for nanobioscience applications. Appl Radiat Isot 73:44–48. doi:10.1016/j.apradiso.2012.11.012

    Article  Google Scholar 

  • Abramovich S, Guzhovskij B, Zherebcov V, Zvenigorodskij A (1984) Estimated values of total and differential cross sections of proton interactions with nuclei Li-6 and Li-7. Vop At Nauki i Tekhn Ser Yadernye Konstanty 114:17

    Google Scholar 

  • Butz T (2012) Surface and volume characterization of TiO nanomaterials by Ti time differential perturbed angular correlation. Radiochim Acta 100:147–153. doi:10.1524/ract.2011.1844

    Article  Google Scholar 

  • Cservenyak I, Kelsall G, Wang W (1996) Reduction of TiIV species in aqueous sulfuric and hydrochloric acid I: titanium speciation. Electrochim Acta 41:563–572

    Article  Google Scholar 

  • Cydzik I, Bilewicz A, Abbas K, Simonelli F, Bulgheroni A, Holzwarth U, Gibson N (2012) A novel method for synthesis of 56Co-radiolabelled silica nanoparticles. J Nanopart Res 14(10):1–9. doi:10.1007/s11051-012-1185-x

    Google Scholar 

  • Gibson N et al (2011) Radiolabelling of engineered nanoparticles for in vitro and in vivo tracing applications using cyclotron accelerators. Arch Toxicol 85:751–773. doi:10.1007/s00204-011-0701-6

    Article  Google Scholar 

  • Gottschalk F, Kost E, Nowack B (2013a) Engineered nanomaterials in water and soils: a risk quantification based on probabilistic exposure and effect modeling. Environ Toxicol Chem 32:1278–1287. doi:10.1002/etc.2177

    Article  Google Scholar 

  • Gottschalk F, Sun T, Nowack B (2013b) Environmental concentrations of engineered nanomaterials: review of modeling and analytical studies. Environ Pollut 181:287–300. doi:10.1016/j.envpol.2013.06.003

    Article  Google Scholar 

  • Hildebrand H, Franke K (2012) A new radiolabeling method for commercial Ag0 nanopowder with 110 mAg for sensitive nanoparticle detection in complex media. J Nanopart Res 14(10):1–7. doi:10.1007/s11051-012-1142-8

    Google Scholar 

  • Holzwarth U et al (2012) Radiolabelling of nanoparticles by proton irradiation: temperature control in nanoparticulate powder targets. J Nanopart Res 14(6):1–15. doi:10.1007/s11051-012-0880-y

    Google Scholar 

  • Holzwarth U, Bellido E, Dalmiglio M, Kozempel J, Cotogno G, Gibson N (2014) 7Be-recoil radiolabelling of industrially manufactured silica nanoparticles. J Nanopart Res 16(9):1–15. doi:10.1007/s11051-014-2574-0

    Google Scholar 

  • Hu R et al (2010) Neurotoxicological effects and the impairment of spatial recognition memory in mice caused by exposure to TiO2 nanoparticles. Biomaterials 31:8043–8050. doi:10.1016/j.biomaterials.2010.07.011

    Article  Google Scholar 

  • Ichedef C et al (2013) Radiochemical synthesis of 105gAg-labelled silver nanoparticles. J Nanopart Res 15(11):1–13. doi:10.1007/s11051-013-2073-8

    Google Scholar 

  • Jiang J, Oberdörster G, Biswas P (2009) Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J Nanopart Res 11:77–89. doi:10.1007/s11051-008-9446-4

    Article  Google Scholar 

  • Keller AA, McFerran S, Lazareva A, Suh S (2013) Global life cycle releases of engineered nanomaterials. J Nanopart Res 15(6):1–17. doi:10.1007/s11051-013-1692-4

    Google Scholar 

  • Koziara J, Lockman P, Allen D, Mumper R (2003) In situ blood–brain barrier transport of nanoparticles. Pharm Res 20:1772–1778. doi:10.1023/B:PHAM.0000003374.58641.62

    Article  Google Scholar 

  • Krane K (1987) Introductory nuclear physics. Wiley, New York

    Google Scholar 

  • Kreyling WG et al (2014) Air-blood barrier translocation of tracheally instilled gold nanoparticles inversely depends on particle size. ACS Nano 8:222–233. doi:10.1021/nn403256v

    Article  Google Scholar 

  • Laycock A, Stolpe B, Römer I, Dybowska A, Valsami-Jones E, Lead JR, Rehkämper M (2014) Synthesis and characterization of isotopically labeled silver nanoparticles for tracing studies. Environ Sci. doi:10.1039/c3en00100h

    Google Scholar 

  • Lekki J et al (2007) On the follicular pathway of percutaneous uptake of nanoparticles: ion microscopy and autoradiography studies. Nucl Instrum Methods Phys Res Sect B 260:174–177. doi:10.1016/j.nimb.2007.02.021

    Article  Google Scholar 

  • Marmorato P et al (2011) 56Co-labelled radioactive Fe3O4 nanoparticles for in vitro uptake studies on Balb/3T3 and Caco-2 cell lines. J Nanopart Res 13:6707–6716. doi:10.1007/s11051-011-0577-7

    Article  Google Scholar 

  • Möller W et al (2013) Gold nanoparticle aerosols for rodent inhalation and translocation studies. J Nanopart Res 15:1–13. doi:10.1007/s11051-013-1574-9

    Google Scholar 

  • National Nuclear Data Center (2015) Q-value calculator. Brookhaven National Laboratory, Upton

  • Neal C, Jarvie H, Rowland P, Lawler A, Sleep D, Scholefield P (2011) Titanium in UK rural, agricultural and urban/industrial rivers: geogenic and anthropogenic colloidal/sub-colloidal sources and the significance of within-river retention. Sci Total Environ 409:1843–1853. doi:10.1016/j.scitotenv.2010.12.021

    Article  Google Scholar 

  • Ortelli S, Blosi M, Albonetti S, Vaccari A, Dondi M, Costa AL (2013) TiO2 based nano-photocatalysis immobilized on cellulose substrates. J Photochem Photobiol A 276:58–64. doi:10.1016/j.jphotochem.2013.11.013

    Article  Google Scholar 

  • Pérez-Campaña C et al (2014) Production of 18F-labeled titanium dioxide nanoparticles by proton irradiation for biodistribution and biological fate studies in rats. Part Part Syst Charact 31:134–142. doi:10.1002/ppsc.201300302

    Article  Google Scholar 

  • Pfennig G, Klewe-Nebenius H, Seelmann-Eggebert W (1998) Chart of nuclides. Forschungszentrum Karlsruhe, Lage

    Google Scholar 

  • Podgoršak EB (2006) Radiation physics for medical physicists, vol 1. Springer, Berlin

    Google Scholar 

  • Rahman IA, Padavettan V (2012) Synthesis of silica nanoparticles by sol–gel: size-dependent properties, surface modification, and applications in silica-polymer nanocomposites—a review. J Nanomater 2012:1–15. doi:10.1155/2012/132424

    Article  Google Scholar 

  • Sekharan KK, Laumer H, Kern BD, Gabbard F (1976) A neutron detector for measurement of total neutron production cross sections. Nucl Instrum Methods 133:253–257. doi:10.1016/0029-554X(76)90617-0

    Article  Google Scholar 

  • Sevastinov YG (1974) Method of radioisotope isolation from cyclotron targets. J Radioanal Chem 21:247–257

    Article  Google Scholar 

  • Shultis J, Faw R (2002) Fundamentals of nuclear science and engineering. Marcel Dekker, New York

    Book  Google Scholar 

  • Silva BFd, Pérez S, Gardinalli P, Singhal RK, Mozeto AA, Barceló D (2011) Analytical chemistry of metallic nanoparticles in natural environments. TrAC Trends Anal Chem 30:528–540. doi:10.1016/j.trac.2011.01.008

    Article  Google Scholar 

  • Simonelli F et al (2011) Cyclotron production of radioactive CeO2 nanoparticles and their application for in vitro uptake studies. IEEE Trans Nanobiosci 10:44–50. doi:10.1109/TNB.2011.2119491

    Article  Google Scholar 

  • Szélecsényi F et al (2001) Excitation function for the natTi(p, x)48V nuclear process: evaluation and new measurements for practical applications. Nucl Instrum Methods Phys Res Sect B 174:47–64. doi:10.1016/S0168-583X(00)00516-4

    Article  Google Scholar 

  • Weir A, Westerhoff P, Fabricius L, Hristovski K, von Goetz N (2012) Titanium dioxide nanoparticles in food and personal care products. Environ Sci Technol 46:2242–2250. doi:10.1021/es204168d

    Article  Google Scholar 

  • Weiss C, Diabate S (2011) A special issue on nanotoxicology. Arch Toxicol 85:705–706. doi:10.1007/s00204-011-0707-0

    Article  Google Scholar 

  • Zhang R, Bai Y, Zhang B, Chen L, Yan B (2012) The potential health risk of titania nanoparticles. J Hazard Mater 211–212:404–413. doi:10.1016/j.jhazmat.2011.11.022

    Google Scholar 

  • Ziegler J, Ziegler M, Biersack J (2013) The stopping and range of ions in matter, SRIM-2013.03. http://www.srim.org/#SRIM

Download references

Acknowledgments

We acknowledge C. Buetow, C. Schoessler, and N. Willnow for technical assistance in the lab. A. Freyer and A. Prager (Leibniz Institute of Surface Modification, Leipzig, Germany) are acknowledged for the SEM imaging of the TiO2 nanopowder samples. This study was financially supported by the German Federal Ministry of Education and Research [projects NanoTrack (support code 03X0078A) and NanoSuppe (support code 03X0144A)]. The authors also gratefully acknowledge financial support from the European Commission’s 7th Framework Programme project “QualityNano” (contract agreement SP4-CAPACITIES-2010-262163).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heike Hildebrand.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hildebrand, H., Schymura, S., Holzwarth, U. et al. Strategies for radiolabeling of commercial TiO2 nanopowder as a tool for sensitive nanoparticle detection in complex matrices. J Nanopart Res 17, 278 (2015). https://doi.org/10.1007/s11051-015-3080-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-015-3080-8

Keywords

Navigation